

Kinetic modelling of air plasmas self-consistency, bottlenecks, successes

Vasco Guerra

Instituto Superior Técnico, Instituto de Plasmas e Fusão Nuclear, Universidade de Lisboa, Portugal

vguerra@ist.utl.pt

Modeling of nonequilibrium molecular plasmas

The N₂ molecule

Kinetic modeling (N₂-O₂)

- Electron kinetics (electron Boltzmann equation)
- •Vibrational kinetics of N₂(X, $0 \le v \le 60$) and O₂(X, $0 \le v \le 47$) molecules
- Chemical kinetics of
 - N₂(A, B, C, B', a', a, w, a'')
 - O₂(X, a, b)
 - N(${}^{4}S, {}^{2}D, {}^{2}P$), O(${}^{3}P, {}^{1}D$)
 - $O_3, O_3^*, NO(X, A, B), NO_2(X, A)$
- •Ion kinetics of N₂⁺, N₄⁺, O₂⁺, O⁺, NO⁺, O⁻

Self-consistent modeling

Input:

- Discharge operating parameters ($p, R, P-n_e-I, \omega$)
- Wall (and often gas) temperature
- Collisional data

Output:

- Electron Energy Distribution Function (EEDF)
- Vibrational Distribution Function (VDF)
- Concentration of excited states, radicals & ions
- (gas temperature)

In collaboration with Jorge Loureiro

```
Plasma Sources Sci. Technol. 6 (1997) 373
Plasma Sources Sci. Technol. 8 (1999) 110
(...)
```

- •Focus on ionisation, N, O and NO
- •The pure gases are often more complex than the air mixture
- Surface processes may play an important role
- •Strong coupling $N_2(X,v)$, NO, N, O, $N_2(A,B)$

p=2 Torr, R=0.8 cm, I=30 & 80 mA

A: $e+N_2 \rightarrow e+e+N_2^+$ B: $e+O_2 \rightarrow e+e+O_2^+$ C: $e+O \rightarrow e+e+O^+$ D: $e+NO \rightarrow e+e+NO^+$ E: $N_2(A,a')+N_2(a') \rightarrow N_4^++e$

 $N_2(A,a')+O_2 \rightarrow N_2(X)+O+O$

p=2 Torr, *R*=0.8 cm, *I*=30 & 80 mA

NO formation:

 $N_2(X,v \ge |3) + O \rightarrow NO + N$ $N_2(A) + O \rightarrow NO + N(^2D)$ $N(^2D) + O_2 \rightarrow NO + O$

O formation:

 $e+O_2 \rightarrow e+O+O$ $N_2(B)+O_2 \rightarrow O+O+N_2$

 $N_2(A) + NO \rightarrow NO(\gamma) + N_2$

Successes #1 NO kinetics and gas heating in pulsed discharges

In collaboration with

Carlos D. Pintassilgo,¹ Olivier Guaitella² and Antoine Rousseau¹

¹Faculdade de Engenharia, Universidade do Porto, Portugal ²Laboratoire de Physique des Plasmas, Ecole Polytechnique, France

Plasma Sources Sci. Technol. **19** (2010) 055001 Plasma Sources Sci. Technol. **23** (2014) 025006

NO kinetics and gas heating in pulsed discharges

Thermal balance

Vibrations need time to build up!

p=1 Torr, R=1.05 cm, I=40 mA

Electron impact excitation is fast

 $N_2(A) + N(^4S) \rightarrow N_2(X,v) + N(^2P)$

NO formation

NO formation:

 $N_2(X,v \ge 13) + O \rightarrow NO + N$ $N_2(A) + O \rightarrow NO + N(^2D)$

The first reaction gains importance:

- with the pulse length
- with the afterglow time

Gas heating

Early instants $e+O_2 \rightarrow e+O_2(B) \rightarrow e+O+O$ $N_2(A, B, a', a)+O_2 \rightarrow N_2+O+O$

Longer instants

 $N_2(X,v)+O \rightarrow N_2(X,v-1)+O$ $O+wall \rightarrow (1/2)O_2+wall$

Gas heating

p=1 Torr, I=150 mA, $\tau=5$ ms Measurements by Hubner *et al*, *Meas. Sci.Technol.* **23** (2012) 115602

Successes #2 NO₂ formation on a Pyrex surface

In collaboration with

Daniil Marinov, Olivier Guaitella and Antoine Rousseau

Laboratoire de Physique des Plasmas, Ecole Polytechnique, France

See the previous lecture, by Daniil Marinov!!!

J. Phys. D: Appl. Phys. 47 (2014) 224012

NO₂ formation on a Pyrex surface

Motivation

- Molecule formation on surfaces is a relevant issue
- NO, NO₂, N₂O, O₃,...

- Major difficulties:
- Good control of the surface conditions
- Reproducibility
- "Unambiguous" interpretation

The garden of the forking paths

- System that avoids the major difficulties already identified
- Demonstrate qualitatively and if possibly quantitatively heterogeneous molecule formation (NO oxidation into NO₂)
- Check for a possible distribution of reactivity of the adsorption sites

Experiment

- Pyrex tube, R=1cm, L=60 cm
- Pre-treatment (~1h) with O_2
 - -[O_s]~4x10¹⁴ cm⁻²
- Pumping (~10')
- "Probing"
 - Injection of NO (0.1-4 Torr)
 - -Measurement of NO and NO₂ kinetics

D. Marinov, O. Guaitella, A. Rousseau and Y. Ionikh, J. Phys. D: Appl. Phys. (2010) 43 115203 D. Marinov, O. Guaitella, J. P. Booth and A. Rousseau, J. Phys. D: Appl. Phys. (2013) 46 032001

Modeling: surface descriptions

- Macroscopic approach (γ)
- Mesoscopic approach
 - Monte Carlo
 - Continuous in terms of coverage
- Microscopic approach (molecular dynamics)

•7 types of "chemisorption sites"

P. F. Kurunczi, J. Guha, and V. M. Donnelly: J. Phys. Chem. B 109 (2005) 20989.

• Eley-Rideal "recombination"

$$NO+O_{S}(i) \rightarrow NO_{2}+S_{V}(i)$$

 $E_R = 16 - 41 \text{ kJ/mol}$

NO₂ adsorption

$$NO_2 + S_V(i) \rightarrow (NO_2)_S$$

Rates of the elementary processes

$$\begin{split} \mathsf{NO+O}_{\mathsf{S}}(i) &\to \mathsf{NO}_2 + \mathsf{S}_{\mathsf{V}}(i) \\ r_1(i) &= k_1^{0\prime}(i) \varphi_i \frac{\phi_{NO}}{[S_i]} \exp\left(-\frac{E_R(i)}{kT_w}\right) \text{ site}^{-1} \mathrm{s}^{-1} \ . \end{split}$$

$$NO_2 + S_V(i) \rightarrow (NO_2)s$$

$$r_2(i) = k_2^{0'}(i)\varphi_i \frac{\phi_{NO}}{[S_i]} \text{ site}^{-1}s^{-1}$$

The system of equations

$$\begin{aligned} \theta_{M}(i) &= \frac{[M_{S}(i)]}{[S_{i}]} \\ \frac{d\theta_{O}(i)}{dt} &= -r_{1}(i)\theta_{O}(i) \\ \frac{d\theta_{NO_{2}}(i)}{dt} &= [1 - \theta_{O}(i) - \theta_{NO_{2}}(i)]r_{2}(i) \\ \frac{d[NO]}{dt} &= -\frac{2}{R}\left(\sum_{i=1}^{7}\theta_{O}(i)[S_{i}]r_{1}(i)\right) \\ \frac{d[NO_{2}]}{dt} &= \frac{2}{R}\sum_{i=1}^{7}\left\{\theta_{O}(i)r_{1}(i) - [1 - \theta_{O}(i) - \theta_{NO_{2}}(i)]r_{2}(i)\right\}[S_{i}] \end{aligned}$$

Results: NO and NO₂

Results: distribution of sites

Results: NO and NO₂

Different timescales require a distribution of $E_R(i)$

Results: coverage of Os and NO2s

p = 0.1 Torr

Results: coverage of Os and NO2s

p = 5 Torr

Results: successive NO fillings

Results: successive NO fillings

t (s)

Results: effective YNO-NO2

$$\left(\frac{d[NO]}{dt}\right)_{wall} = -\frac{\langle v_{NO} \rangle \gamma_{NO \to NO_2}}{2R} [NO]$$

$$\gamma_{NO \to NO_2} = \frac{1}{\phi_{NO}} \sum_{i=1}^7 \theta_S(i) [S_i] r_1(i)$$
Results: effective γNO-NO2

M. Castillo, V. Herrero, I. Mendez, and I. Tanarro, PSST (2004) 13 343: 2x10⁻⁷

Conclusions #2

- Formation of NO₂ by oxidation of NO with previously grafted O atoms on a Pyrex surface was established
- The complex time dependent kinetics observed is a manifestation of a distribution of reactivity among adsorption sites
- This was interpreted as a distribution of activation energies...
- ... which we assign to a distribution of binding energies of adsorbed O atoms

Conclusions #2

- The number and variety of time-dependent experiments imposes severe constraints on the model
- Several (7) types of chemisorption sites, with activation energies for recombination in the range 16-41 kJ/mol

Successes #3

Ozone kinetics in low-pressure discharges

In collaboration with

Daniil Marinov, Jean-Paul Booth, Olivier Guaitella and Antoine Rousseau

Laboratoire de Physique des Plasmas, Ecole Polytechnique, France

Plasma Sources Sci. Technol. 22 (2013) 055018

Ozone kinetics in low-pressure discharges

Motivation

- Ozone kinetics seems quite well established at atmospheric pressure
- •What can we learn at lower pressures?
 - -Surface processes (O₃ formation at the wall)
 - -Role of vibrationally excited ozone (O_3^*)

Ozone formation at the wall

Jansen and Tuzson [J. Phys. Chem. A (2010) 114 9709] - "Isotope Evidence for Ozone Formation on Surfaces"

Lopaev et al [J. Phys. D: Appl. Phys (2011) 44]

- -DC discharges p=10-50 Torr
- -γ(O₃) increases with pressure: ~10⁻³ at 10 Torr;
 ~5×10⁻⁴ at 5 Torr)

Vibrationally excited ozone

Rawlins et al [J. Geophys. Res. 90 (1985) 283]

- $-O_3^*$ is mainly formed on the asymmetric stretching mode v_3 (00*v*)
- Eliasson et al 1987, Eliasson and Kogelschatz 1990 [J. Phys. D: Appl. Phys. 20 (1987) 1421]
 - ► $O_2+O_2+O \rightarrow O_3+O_2$ produces O_3 mainly in an excited state
 - $-O_3^*$ decreases the absolute value of $[O_3]$
 - $-O_3^*$ increases the characteristic time for ozone formation

Lopaev et al 2011

- Model with 5 vibration levels of O₃

Experiment

- •DC discharge with short pulses (~1 ms)
- Silica tube, R = 1 cm, p = 1-5 Torr
- Time-resolved measurements of [O] (TALIF)
- Time-resolved measurements of [O₃] (UV absorption)

Modeling

- Self-consistent kinetic model (Boltzmann, $O_2(X, a, b), O({}^3P, {}^1D), O_3, O_3^*, O^+, O_2^+, O^-)$
- Input: *p*, *I*, *R*, Δ*t*, *T*_g=300 K
- Discharge + afterglow
- One effective vibrationally excited level O3^{*}
- Collision rates taken essentially for the (001) level
- 2/3 of $O_2 + O_2 + O \rightarrow O_3 + O_2$ produce O_3^*

FOR	mat	n
	mau	

 $O_2 + O_2 + O \rightarrow O_3^* + O_2$

Destruction

 $O_3^* + O \rightarrow O_2 + O_2$

 $O_3^* + O_2(a) \rightarrow O_2 + O_2 + O_2$

 $O_3^* + O_2 \rightarrow O_3 + O_2$

 $O_3^* + O \rightarrow O_3 + O$

 O_3^* +Wall $\rightarrow O_3$ +Wall

Results: O atoms

Results: O₃ molecules

Results: role of O₃*

Results: O atoms decay

Results: species concentrations

Results: γ(O₃)

Results: $\gamma(O_3)$

p=5 Torr γ(O₃)<10⁻⁴

Conclusions #3

 Good agreement between measurements and model calculations

- Vibrationally excited ozone plays an important role in O₃ kinetics
- Formation of ozone at surfaces could not be established at the present conditions
- Upper limits for $\gamma(O_3)$ were established at 10⁻⁵ and 10⁻⁴ for p=1 and 5 Torr, respectively, in good agreement with Lopaev *et al* 2011

Successes #4

Line-ratio determination of [N₂(A)] in the N₂ afterglow

In collaboration with

André Ricard¹ and Soo-ghee Oh²

¹Universite de Toulouse, LAPLACE, France

²Division of Energy Systems Research, Ajou University, Suwon, South Korea

Plasma Sources Sci. Technol. 22 (2013) 035009

Line-ratio determination of N₂(A) in the nitrogen afterglow

The nitrogen afterglows

RF discharge, p = 8 Torr, P = 100 W, Q = 1 slm, $R_1 = 0.3$ cm, $R_2 = 1.1$ cm (quartz), gas mixture N₂ -(0-1)%O₂.

Origin of the pink afterglow

•V-E transfers involving N₂(X,v>30)

• Local production of N₂(A) and N₂(a') N₂(X,v \geq 39)+N(⁴S) \rightarrow N₂(A)+N(²D) N₂(X,v \geq 38)+N(⁴S) \rightarrow N₂(a')+N(⁴S)

Origin of the yellow afterglow

•Three-body nitrogen atomic recombination $N+N+N_2 \rightarrow N_2(B,v'=11)+N_2$ $N_2(B) \rightarrow N_2(A)+hv$

Diagnostics: actinometry / line-ratio

- The pink afterglow in pure nitrogen has been systematically studied ~10 years ago
- Optical emission spectroscopy is relatively simple to use and inexpensive
- Large expansion of "actinometric" or "lineratio" methods, usually for the active discharge
- Development of sophisticated kinetic models extension of line-ratio methods for quite different situations!

Diagnostics: actinometry / line-ratio

- A new variant is proposed: determination of the absolute densities of
 - -N(⁴S)
 - $-O(^{3}P)$
 - $-N_2(A)$

in the nitrogen afterglow.

Bonus: experimental estimation of the rate coefficient of reaction

$$N_2(X,v \ge 13) + O \rightarrow NO + N$$

at room temperature

Determination of [N]

Experimental determination of [N]:

- Measurement of the 1⁺ intensity at 580 nm
- Pseudo-stationary concentration [N₂(B)] determined from:

(1)
$$N + N + N_2 \rightarrow N_2(B, v' = 11) + N_2$$

(2) $N_2(B, v' = 11) \rightarrow N_2(A, v'' = 7) + h\nu(580nm)$
(3) $N_2(B) + N_2 \rightarrow N_2(A, X) + N_2$
(4) $N_2(B) + O_2 \rightarrow N_2(A, X) + O + O$

$$a_{NN}I(580) \simeq \frac{kc}{580}A_{580}\frac{k_1}{k_3}[N]^2$$

Requires calibration (NO titration) and early-late "mixing coefficient"

Determination of [O]

Experimental determination of [O]:

- Measurement of the NO_{β} intensity at 320 nm
- Line-ratio $I(1^+)/I(NO_\beta)$
- Pseudo-stationary concentration [NO(*B*)] determined from:

(5)
$$N + O + N_2 \rightarrow NO(B, v' = 0) + N_2$$

(6) $NO(B, v' = 0) \rightarrow NO(X, v'' = 8) + h\nu(320nm)$
(7) $NO(B) + N_2 \rightarrow \text{products}$
(8) $NO(B) + O_2 \rightarrow \text{products}$

 $\frac{a_{NN}I(580)}{I(320)} \simeq \frac{c(580)}{c(320)} \frac{A_{580}}{A_{320}} \frac{(k_1/k_3)[N]}{k_5[O][N_2]} (\nu_6 + k_7[N_2])$

Determination of [N₂(A)]

Experimental determination of $[N_2(A)]$:

- Measurement of the 2⁺ intensity at 316 nm
- Line-ratio I(NO_β)/I(2⁺)
- Pseudo-stationary concentration [N₂(C)] determined from:

(8)
$$N_2(A) + N_2(A) \rightarrow N_2(C, v' = 1) + N_2(X)$$

(9) $N_2(C, v' = 1) \rightarrow N_2(B, v'' = 0) + h\nu(316nm)$
(10) $N_2(C) + N_2 \rightarrow \text{products}$

 $\frac{I(320)}{I(316)} \simeq \frac{A_{320}}{A_{316}} \frac{k_5[N][O][N_2]}{k_8[N_2(A)]^2} \frac{\nu_9 + k_{10}[N_2]}{\nu_6 + k_7[N_2]}$

Bonus: determination of [N₂(A)] #2

 $[N_2(A)]$ can be additionally determined from:

- the I(2⁺)/I(1⁺) ratio
- the $I(NO_{\beta})/I(NO_{\gamma})$ ratio
- [Ricard et al, Plasma Sources Sci. Technol. 22 (2013) 035009]
- the I(NO_β)/I(NO_γ) ratio provides the first experimental estimation of the rate coefficient of

 $N_2(X, v \ge 13) + O \rightarrow NO + N$

at low tempereature (!)

Results: summary

N₂(B) state

p=8 Torr, P=100 W

N₂(B) state

p=8 Torr, P=100 W

N₂(A) concentration

$[N_2(|A)]$ can be determined from different line ratios:

Species	Lines	Industrial N ₂
$[N_2(A)]$	$I_{\gamma}(259)/I_{\beta}(262)$	$1.1 imes (10^9 - 10^{11})$
$[N_2(A)]$	$I_{2^+}(316)/I_{\beta}(320)$	$2.4 imes10^{11}$
$[N_2(A)]$	$I_{1^+}(580)/I_{2^+}(316)$	$7.3 imes10^{10}$

Table: Absolute densities in cm⁻³ estimated in the late afterglow: p = 8Torr, Q = 1 Slm, P = 100 W.

Conclusions #4

- OES line-ratio methods are powerful and can be extended far beyond their typical domain of application
- [N], [O] and [N₂(A)] were experimentally determined
- Different method for estimation of [N₂(A)] give consistent results
- The present work opens the door for a first experimental (indirect) determination of the rate coefficient of the NO formation reaction $N_2(X,v \ge 13)+O \rightarrow NO+N$ at room temperature

Successes #5 Surface waves in capillary tubes

In collaboration with

Philippe Coche,¹ Luís Lemos Alves,¹ Olivier Leroy,² Gabi Stancu,³ Philippe Leprince² and Tiberiu Minea²

¹ IPFN, Instituto Superior Técnico, Universidade de Lisboa, Portugal

² LPGP, Université Paris Sud XI, Orsay, France

³ Ecole Centrale de Paris, France

Proceedings of the ESCAMPIG XXII, Greifswald, July 2014

•*f*=2.45 GHz, *p*=2 Torr, *R*=0.345 mm

- The global behaviour is strongly dominated by electron impact processes and transport losses
- Need for the Self & Ewald transport theory
- Heterogeneous atomic recombination is important

•NO kinetics:

 $N(^{2}D)+O_{2} \rightarrow N+NO$ e+NO \rightarrow e+e+NO⁺ NO⁺+wall \rightarrow e+NO

- Self-consistent model for air validated for a wide range of operating conditions
- Bottlenecks / challenges
- State-to-state reliable collisional data
 - [Shakhatov & Lebedev, *High Energy Chem.* 42 (2008) 170; Annarita Laricchiuta, this Master class]
- T_g dependence of the rate coefficients

 $[N_2(X,v \ge 13)+O \rightarrow NO+N \text{ at low Tg,}$ Several data at high Tg (esther, <u>http://esther.ist.utl.pt/</u>)]

Summary

and upper atmospheric chemistry.⁵ Determining the role of $N_2(X,v)$ in these various processes is difficult, however, due to $N_2(X,v)$'s diabolical resistance to detection. A number of laser-based techniques for detecting $N_2(X,v)$ have been de-

L. G. Piper, J. Chem. Phys. 97 (1992) 270

How-to-draw-funny-cartoons.com

Summary

Breakthrough measurements

- N₂ VDF [one measurement at v=18; Macko et al,
 J. Phys. D: Appl. Phys 34 (2001) 1807]
- N_2 singlets
- Role of V-E energy exchanges

[Mário Lino da Silva & J. Loureiro, ICPIG 2013 PSI-113]

Surface characteristics and surface processes
 [Daniil Marinov, this master class]

Conferences @ Lisboa!

You just don't want to miss them! 😇

