Analytical OES

LIF OH

Diagnostics on Plasma Chemistry: Unveiling Secrets

Giorgio Dilecce

Istituto di Metodologie Inorganiche e dei Plasmi (IMIP) - CNR, Bari - ITALY

Bad Honnef Master Class , October 10, 2014

Spectroscopic Diagnostics in Plasma Chemistry: Plasma parameters

Plasma parameters determine electron impact dissociation rates

The starting point of Plasma Chemistry

electron density

- Emission spectroscopy with absolute calibration with knowledge of the EEDF
- Lines ratio method based on a CR model including electron collision processes in electronic states
- Stark broadening
- Thomson scattering
- Laser Collision-induced fluorescence

Spectroscopic Diagnostics in Plasma Chemistry: Plasma parameters

Plasma parameters determine electron impact dissociation rates

The starting point of Plasma Chemistry

electron energy distribution function $(T_e?)$ - reduced electric field E/N

- Lines ratio method based on a CR model
- Stark polarization spectroscopy
- Thomson scattering
- Coherent Raman Scattering (CARS)

Spectroscopic Diagnostics in Plasma Chemistry: vibrational excitation

Vibrational excitation affects dissociation rates and the discharge power balance

see, for example, CO_2 and CH_4 dissociation in plasma reforming issues or H_2 dissociative ionization in negative ion sources

vibrational distributions in the ground state

- OES based on a CR model
- infrared emission spectroscopy (polar molecules)
- Raman Scattering (spontaneous and coherent CARS)

Spectroscopic Diagnostics in Plasma Chemistry: gas temperature

Important for processing and for the definition of operating conditions

based on the rotational temperature of emission bands

T_{gas}=T_{rot} ?

see P J Bruggeman, N Sadeghi, D C Schram and V Linss "Gas temperature determination from rotational lines in non-equilibrium plasmas: a review" Plasma Sources Sci. Technol. 23 (2014) 023001

Spectroscopic Diagnostics in Plasma Chemistry: transient species

Reaction intermediates: radicals, metastable electronic states

concentration, time evolution: actors and markers of the (plasma-)chemical kinetics, kinetic models validation

Techniques - preferably time-resolved

- OES based on a CR model
- absorption spectroscopy
- laser-induced fluorescence (LIF) spectroscopy

Optical Emission Spectroscopy (OES)

 $\frac{collisional-radiative(CR) models}{\frac{dA^*}{dt} = R_{exc} - QA^*}$ Q = radiative. + collisional deexcitation

Analytical use of OES possible provided:

 R_{exc} is a known function of A Q is known

Absorption

line of sight measurement - low spatial resolution

Conventional (resonant, broad-band), Cavity enhanced (CEAS-CRDS)

Laser Induced Fluorescence (LIF)

pulsed lasers - high temporal and spatial resolution

 $10 \text{ ns} - \text{sub-mm}^3$

OH A-X POTENTIAL CURVES

Collision-induced transformations of electronic states – $A^* + M \rightarrow B + M$

electronic quenching

The process by which a collision with specie M removes the energy from the excited state manifold towards any other final product

LIF thermometry

Collision-induced transformations of electronic states – $A^* + M \rightarrow B + M$

electronic quenching

The process by which a collision with specie M removes the energy from the excited state manifold towards any other final product

LIF OH A

Collision-induced transformations of electronic states – $A^* + M \rightarrow B + M$

rotational energy transfers (RET)

RET collisions are very fast

for N₂($B^{3}\Pi_{g}$): $k^{RET} = 3 \times 10^{-9} cm^{-3} s^{-1}$ $k^{Q} = 3 \times 10^{-11} cm^{-3} s^{-1}$ $\tau^{RET} \approx 1/100\tau$

Collision-induced transformations of electronic states - $A^* + M \rightarrow B + M$

rotational energy transfers (RET)

RET collisions are very fast

for N₂(
$$B^{3}\Pi_{g}$$
):
 $k^{RET} = 3 \times 10^{-9} cm^{-3} s^{-1}$
 $k^{Q} = 3 \times 10^{-11} cm^{-3} s^{-1}$
 $\tau^{RET} \approx 1/100 \tau$

 $\tau^{RET} \ll \tau$ $T_{rot} = T_{gas}$

Collision-induced transformations of electronic states – $A^* + M \rightarrow B + M$

rotational energy transfers (RET)

RET collisions are very fast

for N₂(
$$B^3\Pi_g$$
):
 $k^{RET} = 3 \times 10^{-9} cm^{-3} s^{-1}$
 $k^Q = 3 \times 10^{-11} cm^{-3} s^{-1}$
 $\tau^{RET} \approx 1/100\tau$

 $\tau^{\textit{RET}} \ll \tau$

 $T_{rot} = T_{gas}$

ALWAYS TRUE ?

The OH($A^2\Sigma^+ \rightarrow X^2\Pi$) 3064 Å System in He-H₂O

 $\tau^{RET} \ll \tau$ not fulfilled, especially for J > 10, on increasing water content decrease of lifetime and strong decrease of RET rates on increasing J

Collision-induced transformations of electronic states – $A^* + M \rightarrow B + M$

vibrational energy transfers (VET)

VET collisions depend strongly on collision partner

for
$$OH(A^2\Sigma^+, v = 1 \rightarrow v = 0)$$
:

$$k^{VET} \sim 10^{-14} cm^{-3} s^{-1}$$
 for He

$$k^{VET} = 2.7 imes 10^{-12} cm^{-3} s^{-1}$$
 for Ar

$$k^{VET} = 7.3 \times 10^{-11} cm^{-3} s^{-1}$$
 for H₂O
 $k^{VET} = 2.3 \times 10^{-10} cm^{-3} s^{-1}$ for N₂

Collision-induced transformations of electronic states – $A^* + M \rightarrow B + M$

vibrational energy transfers (VET)

VET collisions depend strongly on collision partner

for OH(
$$A^2\Sigma^+$$
, $v = 1 \rightarrow v = 0$):
 $k^{VET} \sim 10^{-14} cm^{-3} s^{-1}$ for He
 $k^{VET} = 2.7 \times 10^{-12} cm^{-3} s^{-1}$ for Ar
 $k^{VET} = 7.3 \times 10^{-11} cm^{-3} s^{-1}$ for H₂C
 $k^{VET} = 2.3 \times 10^{-10} cm^{-3} s^{-1}$ for N₂

τ^{VET}/τ

Strongly dependent on gas mixture composition

heavy particles collisions

Sources: Combustion and atmospheric chemistry research

Electronic quenching - various colliders

NO($A^2\Sigma^+$), OH($A^2\Sigma^+$) and CH($A^2\Delta$) in the temperature range 300-2500 K

 $N_2(C^3\Pi_u, v = 0 - 4), N_2^+(B^2\Sigma_u^+, v = 0, 1, 2)$

He n=3,4 sublevels, Ar n=4 sublevels

H(3d²D_J), O(3p³P_J), N(3s⁴P_{3/2}) (for TALIF meas. of H, O, N), Kr(5p'[3/2]₂), Xe(7p[3/2]₂) (for calibration)

heavy particles collisions

Sources: Combustion and atmospheric chemistry research

Electronic quenching - various colliders

NO($A^2\Sigma^+$), OH($A^2\Sigma^+$) and CH($A^2\Delta$) in the temperature range 300-2500 K

 $N_2(C^3\Pi_u, v = 0 - 4), N_2^+(B^2\Sigma_u^+, v = 0, 1, 2)$

He n=3,4 sublevels, Ar n=4 sublevels

H(3d²D_J), O(3p³P_J), N(3s⁴P_{3/2}) (for TALIF meas. of H, O, N), Kr(5p'[3/2]₂), Xe(7p[3/2]₂) (for calibration)

RET - various colliders

 $N_2(B^3\Pi_g)$, $NO(A^2\Sigma^+)$, $CH(A^2\Delta)$, $CH(B^2\Sigma^-)$, $OH(A^2\Sigma^+)$

heavy particles collisions

Sources: Combustion and atmospheric chemistry research

Electronic quenching - various colliders

NO($A^2\Sigma^+$), OH($A^2\Sigma^+$) and CH($A^2\Delta$) in the temperature range 300-2500 K

 $N_2(C^3\Pi_u, v = 0 - 4), N_2^+(B^2\Sigma_u^+, v = 0, 1, 2)$

He n=3,4 sublevels, Ar n=4 sublevels

H(3d²D_J), O(3p³P_J), N(3s⁴P_{3/2}) (for TALIF meas. of H, O, N), Kr(5p'[3/2]₂), Xe(7p[3/2]₂) (for calibration)

RET - various colliders

 $N_2(B^3\Pi_g)$, $NO(A^2\Sigma^+)$, $CH(A^2\Delta)$, $CH(B^2\Sigma^-)$, $OH(A^2\Sigma^+)$

VET - various colliders

 $CH(A^2\Delta, B^2\Sigma^-, v = 1)$, $OH(A^2\Sigma^+, v = 1)$, the $N_2(C^3\Pi_u, v = 0 - 4)$ manifold

heavy particles collisions

Sources: Combustion and atmospheric chemistry research

Electronic quenching - various colliders

NO($A^2\Sigma^+$), OH($A^2\Sigma^+$) and CH($A^2\Delta$) in the temperature range 300-2500 K

N₂($C^3\Pi_u, v = 0 - 4$), N₂⁺($B^2\Sigma_u^+, v = 0, 1, 2$)

He n=3,4 sublevels, Ar n=4 sublevels

H(3d²D_J), O(3p³P_J), N(3s⁴P_{3/2}) (for TALIF meas. of H, O, N), Kr(5p'[3/2]₂), Xe(7p[3/2]₂) (for calibration)

RET - various colliders

 $N_2(B^3\Pi_g)$, $NO(A^2\Sigma^+)$, $CH(A^2\Delta)$, $CH(B^2\Sigma^-)$, $OH(A^2\Sigma^+)$

VET - various colliders

 $CH(A^2\Delta, B^2\Sigma^-, v = 1)$, $OH(A^2\Sigma^+, v = 1)$, the $N_2(C^3\Pi_u, v = 0 - 4)$ manifold

Current knowledge on collision processes

electron collisions

Electronic quenching and collision transfers - various colliders

He n=3,4 sublevels, $T_e < 1eV$, $T_e = 3-7 eV$ - measurements

Ar n=4 sublevels - detailed balance from the inverse electron impact excitation

Optical Emission Spectroscopy (OES)

collisional-radiative(CR) models

$$\frac{dA^*}{dt} = R_{exc} - QA^*$$

$$Q = \text{radiative.} + \text{collisional de-}$$
excitation

Analytical use of OES possible provided:

 R_{exc} is a known function of A Q is known

Identification of excitation processes: pulsed discharges

The decay of the optical emission is an indication of the excitation process

with $R_{exc} = 0$, $\frac{dA^*}{dt} = -QA^*$: exponential decay

N₂ Second Pos. Sys.

LIF N₂(A)

Identification of excitation processes: pulsed discharges

The decay of the optical emission is an indication of the excitation process

with $R_{exc} = 0$, $\frac{dA^*}{dt} = -QA^*$: exponential decay

N₂ Second Pos. Sys.

fast component

$$e + N_2(X^1\Sigma_g) \rightarrow N_2(C^3\Pi_u) + e$$

Identification of excitation processes: pulsed discharges

The decay of the optical emission is an indication of the excitation process

with $R_{exc} = 0$, $\frac{dA^*}{dt} = -QA^*$: exponential decay

N₂ Second Pos. Sys.

fast component

$$e + N_2(X^1\Sigma_g) \rightarrow N_2(C^3\Pi_u) + e$$

Slow component

 $N_2(A^3\Sigma_u^+) + N_2(A^3\Sigma_u^+) \rightarrow N_2(C^3\Pi_u) + N_2(X)$

Emission - LIF Time-correlation: the NO- γ System

NO- γ emission not due to electron impact excitation

SPS emission follows the electron impact time evolution N2 ATP Dielectric Barrier Discharge

Townsend diffuse discharge

Emission - LIF Time-correlation: the NO- γ System

 $N_2(A^3\Sigma^+_u)$ by LIF and NO- γ emission

 $N_2(A^3\Sigma_u^+) + NO(X) \rightarrow NO(A^2\Sigma^+) + N_2(X)$

N2 ATP Dielectric Barrier Discharge

Townsend diffuse discharge

Emission - LIF Time-correlation: the NO- γ System

 $N_2(A^3\Sigma^+_u)$ by LIF and NO- γ emission

 $N_2(A^3\Sigma_u^+) + NO(X) \rightarrow NO(A^2\Sigma^+) + N_2(X)$

N2 ATP Dielectric Barrier Discharge

Townsend diffuse discharge

The George Clooney Criterion: WHAT ELSE?

Time correlation is a strong indication but not a rigorous proof. It must be supported by a knowledge of all possible processes.

in He - CH₄ (+small N₂ admix.)

FNS -
$$N_2^+(B^2\Sigma_u^+ \rightarrow X^2\Sigma_g^+)$$
 as "acti-

Penning ionization: $He(2^3S) + N_2(X) \rightarrow N_2^+(B) + He$

in He - CH₄ (+small N₂ admix.)

FNS - $N_2^+(B^2\Sigma_u^+ \rightarrow X^2\Sigma_g^+)$ as "actinometer"

Penning ionization: $He(2^{3}S) + N_{2}(X) \rightarrow N_{2}^{+}(B) + He$

if CH(A) is excited by dissociative excitation (DE)

 $He(2^{3}S) + CH_{4} \rightarrow CH(A) + prod.$

in He - CH₄ (+small N₂ admix.)

FNS - $N_2^+(B^2\Sigma_u^+ \rightarrow X^2\Sigma_g^+)$ as "actinometer"

Penning ionization: $He(2^3S) + N_2(X) \rightarrow N_2^+(B) + He$

if CH(A) is excited by dissociative excitation (DE)

$$He(2^{3}S) + CH_{4} \rightarrow CH(A) + prod.$$

$$f_2 = \frac{I_{CHA}Y_{FNS}}{I_{FNS}Y_{CHA}} \frac{[N_2]}{[CH_4]} = \frac{r_{DE}}{r_{Penn}} \frac{[CH_4]}{[N_2]}$$

is a linear function of $[CH_4]/[N_2]$

in He - CH₄ (+small N₂ admix.)

slope=
$$(1.73 \pm 0.07) \times 10^{-2}$$

 $\frac{r_{DE}}{r_{Penn}} = 1.95 \times 10^{-2}$ (literature)

FNS - $N_2^+(B^2\Sigma_u^+ \rightarrow X^2\Sigma_g^+)$ as "actinometer"

Penning ionization: $He(2^{3}S) + N_{2}(X) \rightarrow N_{2}^{+}(B) + He$

if CH(A) is excited by dissociative excitation (DE)

$$He(2^{3}S) + CH_{4} \rightarrow CH(A) + prod.$$

$$f_2 = \frac{I_{CHA}Y_{FNS}}{I_{FNS}Y_{CHA}} \frac{[N_2]}{[CH_4]} = \frac{r_{DE}}{r_{Penn}} \frac{[CH_4]}{[N_2]}$$

is a linear function of $[CH_4]/[N_2]$

in N_2 - $CH_4\ mixtures$

SPS -
$$N_2(C^3\Pi_u \rightarrow B^3\Pi_g)$$
 as "actinome-
ter"
electron impact

$$e + N_2(X) \rightarrow N_2(C) + e$$

24 / 97

in N_2 - CH_4 mixtures

SPS - $N_2(C^3\Pi_u \rightarrow B^3\Pi_g)$ as "actinometer"

electron impact

$$e + N_2(X) \rightarrow N_2(C) + e$$

if CH(A)is excited by DE

$$e + CH_4 \rightarrow CH(A) + prod.$$
Ratio of emission spectral features - the CH 4300 Å System

in N_2 - CH_4 mixtures

SPS - $N_2(C^3\Pi_u \rightarrow B^3\Pi_g)$ as "actinometer"

electron impact

$$e + N_2(X) \rightarrow N_2(C) + e$$

if CH(A)is excited by DE

$$e + CH_4 \rightarrow CH(A) + prod.$$

$$F_3 = \frac{I_{CHA}Y_{SPS}}{I_{SPS}Y_{CHA}}[N_2] = \frac{r_{DE}}{r_{eC}}[CH_4]$$

is a linear function of [CH₄]

Ratio of emission spectral features - the CH 4300 Å System

in N_2 - CH_4 mixtures

slope=
$$(3.28 \pm 0.06) \times 10^{-2}$$

 $\frac{r_{DE}}{r_{eC}} = 2 \times 10^{-2}$ (EEDF calc.)

SPS - $N_2(C^3\Pi_u \rightarrow B^3\Pi_g)$ as "actinometer"

electron impact

$$e + N_2(X) \rightarrow N_2(C) + e$$

if CH(A)is excited by DE

$$e + CH_4 \rightarrow CH(A) + prod.$$

$$f_3 = \frac{I_{CHA}Y_{SPS}}{I_{SPS}Y_{CHA}}[N_2] = \frac{r_{DE}}{r_{eC}}[CH_4]$$

is a linear function of [CH₄]

25 / 97

VDF features: The $CN(B^2\Sigma^+ \rightarrow X^2\Sigma^+)$ Violet System

in N_2 -CH₄ mixtures

suprathermal distribution overpopulation of v=1, 2, 3 not time-resolved measurements

VDF features: The $CN(B^2\Sigma^+ \rightarrow X^2\Sigma^+)$ Violet System

in N_2 -CH₄ mixtures

suprathermal distribution overpopulation of v=1, 2, 3

in pure N_2 gas feed

suprathermal distribution

overpopulation of v up to v=7

not time-resolved measurements

VDF features: The $CN(B^2\Sigma^+ \rightarrow X^2\Sigma^+)$ Violet System

in N_2 -CH₄ mixtures

suprathermal distribution overpopulation of v=1, 2, 3

in pure N₂ gas feed

suprathermal distribution

overpopulation of v up to v=7

active role of the surface

carbon species from the surface deposit

not time-resolved measurements

Time (ms)

Does CN(B) excitation involve CN(X) processes?

Time (ms)

Time (ms)

VDF features: The CN($B^2\Sigma^+ \rightarrow X^2\Sigma^+$) System

weak vibrational relaxation in the CN(B,v) manifold (LIF)

close to nascent CN(B,v) vibrational distributions - memory of the creation process

time-spectrally-resolved

In N₂ post-discharge

VDF features: The $CN(B^2\Sigma^+ \rightarrow X^2\Sigma^+)$ System

weak vibrational relaxation in the CN(B,v) manifold (LIF)

close to nascent CN(B,v) vibrational distributions - memory of the creation process

In N₂ post-discharge

in N₂-CH₄ discharge

VDF features: The CN($B^2\Sigma^+ \rightarrow X^2\Sigma^+$) System

based on vibrational distributions + a pinch of GC (WHAT ELSE?) criterion

 $C + N + M \rightarrow CN(B) + M$ Washida et al. 1975 J. Chem Phys. 63

4230

VDF features: The CN($B^2\Sigma^+ \rightarrow X^2\Sigma^+$) System

based on vibrational distributions + a pinch of GC (WHAT ELSE?) criterion

 $\frac{C + N + M \rightarrow CN(B) + M}{\text{Washida et al. 1975 J. Chem Phys. 63}}$

 $N + CH \rightarrow CN(A, B) + H$ $(N + CH_2 \rightarrow CN(A, B) + H_2)$ reaction exhothermicity

Identification of excitation processes: pulsed discharges

The decay of the optical emission is an indication of the excitation process

with $R_{exc} = 0$, $\frac{dA^*}{dt} = -QA^*$: exponential decay

N₂ Second Pos. Sys.

fast component

$$e + N_2(X^1\Sigma_g) \rightarrow N_2(C^3\Pi_u) + e$$

Slow component

 $N_2(A^3\Sigma_u^+) + N_2(A^3\Sigma_u^+) \rightarrow N_2(C^3\Pi_u) + N_2(X)$

LIF N₂(A)

Identification of excitation processes: pulsed discharges

And the vibrational distribution too!!

Figure 10. Post discharge evolution of the normalized $[N_2(G, \nu)]$ distribution at $p \approx 0.5$ Torr. t_{pd} is the post discharge time (from [37]).

fast component

$$e + N_2(X^1\Sigma_g) \rightarrow N_2(C^3\Pi_u) + e$$

intermediate component
$$e + N_2(A^3\Sigma^+_\mu) o N_2(C^3\Pi_\mu) + e$$
 slow e

Slow component

$$N_2(A^3\Sigma_u^+) + N_2(A^3\Sigma_u^+) \to N_2(C^3\Pi_u) + N_2(X)$$

Rot. excitation: the OH($A^2\Sigma^+ \rightarrow X^2\Pi$) System

Emission spectra show over-thermal ro-vibrational excitation He-H₂O discharge

Exp

Sim

100

Rot. excitation: the OH($A^2\Sigma^+ \rightarrow X^2\Pi$) System

Rotational excitation depends on the vibrational level

and on water partial pressure

(0,0)

wavelenght (Å)

Rotational excitation: the OH($A^2\Sigma^+ \rightarrow X^2\Pi$) System

Fingerprints of an exothermic process - Perhaps (in He-H₂O) disch.:

dissociative excitation $H_2O + e \rightarrow OH(A) + e$ dissociative recombination $H_2O^+(H_3O)^+ + e \rightarrow OH(A) + H(H_2)$

E/N from N₂ Second Positive System (SPS) and First Negative System (FNS) emission ratio

model for (C,v=0) and (B,v=0)

$$\frac{dC_0}{dt} = n_e k_0^{XC} X - (k_0^{QC} X + A_0^C) C_0$$

$$\frac{dB_0^+}{dt} = n_e k_0^{XB+} X - (k_0^{QB+} X + A_0^{B+}) B_0^-$$

E/N from N₂ Second Positive System (SPS) and First Negative System (FNS) emission ratio

model for (C,v=0) and (B,v=0)

$$\frac{dC_0}{dt} = n_e k_0^{XC} X - (k_0^{QC} X + A_0^C) C_0$$

$$\frac{dB_0^+}{dt} = n_e k_0^{XB+} X - (k_0^{QB+} X + A_0^{B+}) B_0^+$$

two resonant photons absorption

 $N_2(A^3\Sigma^+_u) + h\nu_{l1} \rightarrow N_2(B^3\Pi_g) + h\nu_{l2} \rightarrow N_2(C^3\Pi_u)$

fluorescence

 $N_2(C^3\Pi_u) \rightarrow N_2(B^3\Pi_g) + h\nu_f$

Direct fluorescence

electronic quenching rates

E/N from N₂ Second Positive System (SPS) and First Negative System (FNS) emission ratio

model for (C,v) and (B,v=0) includes collision quenching and vibrational relaxation

$$\frac{dC_v}{dt} = n_e k_v^{XC} X - (k_v^{QC} X + A_v^C) C_v + \sum_w k_{wv} X C_w}{\frac{dB_0^+}{dt}} = n_e k_0^{XB+} X - (k_0^{QB+} X + A_0^{B+}) B_0^+$$

Introduction

$N_2^+(B, v = 0)$ electronic quenching

rate constants show a dependence on the excitation method class

Need for deeper investigation. Averaging over all data is probably not correct

E/N determination by intensity ratio of SPS and FNS spectral bands: effect of $N_2^+(B)$ quenching incertitude

electron impact

$$e + N_2(X) \rightarrow N_2(C, v) + e \qquad k_v^{XC}$$

 $e + N_2(X) \rightarrow N_2^+(B, v) + e \qquad k_v^{XB+}$

 $\frac{\text{steady-state v=0 emissions ratio}}{R = \frac{k_0^{XC}}{k_0^{XB+}} = \frac{I_{SPS}}{I_{FNS}} \frac{(k_0^{QC} X + A_0^C)}{(k_0^{QB+} X + A_0^{B+})}$

Three uncertainty cases are presented, with R varying by a factor of 3

Model calculation of N₂(C,v) populations

model includes collision quenching and vibrational relaxation

$$rac{dC_v}{dt} = n_e \sum_j k_{vj}^{XC} X_j - (k_v^{QC} X + A_v) C_v + \sum_w k_{wv} X C_w$$

electronic quenching by N_2 - (OODR-LIF) and by O_2 (pulsed discharge)

rate constants $(10^{-11} cm^3 s^{-1})$

coll	v=0	v=1	v=2	v=3	v=4
N ₂	1.24	3.14	4.28	6.34	9.86
O ₂	30	31	37	43	-

Model calculation of N₂(C,v) populations

model includes collision quenching and vibrational relaxation

$$rac{dC_v}{dt} = n_e \sum_j k_{vj}^{XC} X_j - (k_v^{QC} X + A_v) C_v + \sum_w k_{wv} X C_w$$

electronic quenching by N_2 - (OODR-LIF) and by O_2 (pulsed discharge)

rate constants $(10^{-11} cm^3 s^{-1})$

coll	v=0	v=1	v=2	v=3	v=4
N ₂	1.24	3.14	4.28	6.34	9.86
O ₂	30	31	37	43	-

Introduction

(Analytical OES)

Vibrational Temperature of the ground state - SPS case

Old quenching data (w-out VET) $T_e = 1.2 \text{ eV } T_v(X)=1100 \text{ K}$ $T_e = 1.7 \text{ eV } T_v(X)=300 \text{ K}$

New quenching data with VET

 $T_e = 3 \text{ eV} T_v(X) = 1100 \text{ K}$

Vibrational Temperature of the ground state - FNS case

Penning ionization in He-N2 mixtures

$$He(2^3S) + N_2(X^1\Sigma_g, v) \rightarrow N_2^+(B^2\Sigma_u^+) + e + He$$

Figure 8. Spectra of $\Delta v = -2$ sequence of N₂⁴(FNS) for 0.2% N₂ mixture at 0.5 Torr and 500 Hz pulsing, in discharge (a) at 970 gs after the switching ON, and in post discharge (b) at 10 gs after the switching OFF.

Figure 13. N²₁(8, τ) relative vibrational distributions: experimental (symbol); referring also to the distributions of figure 14, (1) is generated from a Treanor-Gordiets N₂(X, σ) distribution at τ_{τ} =350 K and θ_{τ} =4150 K, $\tau_{\tau_{\tau}}$ = σ =1000 K curve (17); (2) from modified Treanor-Gordiets curve (27); (3) from modified Treanor Gordiets curve (37); (4) from Boltzmann at 4150 K curve (47).

Introduction

Vibrational Temperature of the ground state - FNS case

Penning ionization in He-N2 mixtures

 $He(2^3S) + N_2(X^1\Sigma_g, v) \rightarrow N_2^+(B^2\Sigma_u^+) + e + He$

Figure 14. $N_3(X, v)$ relative distribution: experimental obtained from $N_2^1(B, v')$ by matrix inversion (Symbols); (1) analytical Treanor-Gordiest distribution for $T_1 = 330$ K, and $\Theta_1^0 = 4150$ K, $T_{xyy0} = 1000$ K; (2) as (1) but smoothing the curve for N_{xyy0} ; as curve (1) but $T_{xyy0} = 1000$ K; (4) Boltzmann distribution at 4150 K.

Figure 13. N₂(0, p') relative vibrational distributions: experimental (symbols); referring also to the distributions of figure 14, (1) is generated from a Treanor-Gordiets N₂(X, p_1 distribution at T₁=350 K and Θ_1 =4150 K, T_{1>2}=0=1000 K curve (1); (2) from modified Treanor-Gordiets curve (2); (3) from modified Treanor-Gordiets curve (3); (4) from Boltzmann at 4150 K curve (4).

Analytical use of OES: conclusions

Is it possible to use OES for analytical purposes? (in particular radicals detection)

• electron impact does not always dominate the emission spectra

LIF N₂(A)

Analytical use of OES: conclusions

Is it possible to use OES for analytical purposes? (in particular radicals detection)

- electron impact does not always dominate the emission spectra
- relationship between the emission and the corresponding radical not straightforward or inexistent

Analytical use of OES: conclusions

Is it possible to use OES for analytical purposes? (in particular radicals detection)

- electron impact does not always dominate the emission spectra
- relationship between the emission and the corresponding radical not straightforward or inexistent
- excitation and quenching processes must be carefully known
Analytical use of OES: conclusions

Is it possible to use OES for analytical purposes? (in particular radicals detection)

- electron impact does not always dominate the emission spectra
- relationship between the emission and the corresponding radical not straightforward or inexistent
- excitation and quenching processes must be carefully known
- even the use of emission features as process monitor must be very careful, when not impossible

Analytical use of OES: conclusions

Is it possible to use OES for analytical purposes? (in particular radicals detection)

- electron impact does not always dominate the emission spectra
- relationship between the emission and the corresponding radical not straightforward or inexistent
- excitation and quenching processes must be carefully known
- even the use of emission features as process monitor must be very careful, when not impossible

radicals monitoring must rely on other techniques

- Laser Induced Fluorescence
- Absorption

Introduction

(LIF OH)

Laser Induced Fluorescence (LIF)

pulsed lasers - high temporal and spatial resolution

 $10 \text{ ns} - \text{sub-mm}^3$

OH A-X POTENTIAL CURVES

Absorption

LIF detection of OH

(LIF OH)

absorption

он(>	<²П _i)	+	$h\nu_L$	\rightarrow		OH(A	$^{2}\Sigma^{+})$
Δv	=	1	seque	nce	-	(1,0)	band
Q1(1)	+Q21	(1)	lines λ	= 2	281	.913 <i>n</i> ı	m

LIF detection of OH

absorption

 $OH(X^2\Pi_i) + h\nu_L \rightarrow OH(A^2\Sigma^+)$ $\Delta\nu = 1$ sequence - (1,0) band Q1(1)+Q21(1) lines $\lambda = 281.913nm$

fluorescence

 $\begin{array}{rcl} OH(A^2\Sigma^+) & \rightarrow & OH(X^2\Pi_i) \ + \ h\nu_F \\ \Delta\nu & = \ 0 \ \ \text{sequence} \ \ (1,1)+(0,0) \ \ \text{bands} \\ \lambda \ \sim \ 310 nm \end{array}$

LIF detection of OH

absorption

 $OH(X^2\Pi_i) + h\nu_L \rightarrow OH(A^2\Sigma^+)$ $\Delta\nu = 1$ sequence - (1,0) band Q1(1)+Q21(1) lines $\lambda = 281.913nm$

fluorescence

 $\begin{array}{rcl} OH(A^2\Sigma^+) & \rightarrow & OH(X^2\Pi_i) \ + \ h\nu_F \\ \Delta\nu & = \ 0 \ \ \text{sequence} \ \ (1,1)+(0,0) \ \ \text{bands} \\ \lambda \ \sim \ 310 nm \end{array}$

Model description of LIF process

The measured LIF signal

$$S(t) = \frac{\Omega}{4\pi} T \eta e GR(A_{(0,0)} P_{A0}(t) + A_{(1,1)} P_{A1}(t)) = \frac{S_0(t) + S_1(t) - PMT}{S_0(t) + S_1(t) - PMT}$$

 $\mathcal{J} = \int_0^\infty S(t) dt = \frac{\mathcal{J}_0 + \mathcal{J}_1 - \mathsf{ICCD}}{\mathcal{J}_0 + \mathcal{J}_1 - \mathsf{ICCD}}$

Introduction

Model description of LIF process

The measured LIF signal

$$S(t) = \frac{\Omega}{4\pi} T \eta e GR(A_{(0,0)} P_{A0}(t) + A_{(1,1)} P_{A1}(t)) = S_0(t) + S_1(t) - PMT$$

$$\mathcal{J} = \int_0^\infty S(t) dt = \frac{\mathcal{J}_0 + \mathcal{J}_1 - \text{ICCD}}{\mathcal{J}_0 + \mathcal{J}_1 - \text{ICCD}}$$

The dance of collisions in fluorescence spectra

Beauty, as well as happiness, is frequent. No day goes by without we live a little while in paradise.

Jorge Luis Borges

(LIF OH) Abso

The VET versus Q_E competition determines fluorescence features: the Ar-H₂O case

rate	coefficients				
(cm^3s^{-1})					
$k_{Ar}^{1 ightarrow 0} =$	2.7×10^{-12}				
$k^{1\rightarrow 0}_{H_2O} =$	7.3×10^{-11}				
$k_{H_2O}^{Q_E} = 6.$	$6 imes 10^{-10}$				

VET	Yield		
	k^{VET}		
k ^{VET}	$+ k^{Q_E}$	+	A

 $He + H_2O + air$

Q + VET measurement allows recovering the gas composition

model calculations of:
$$\mathcal{J}_0/\mathcal{J}_1$$
 and $Q = \frac{\mathcal{J}_0 Q_0 + \mathcal{J}_1 Q_1}{\mathcal{J}_0 + \mathcal{J}_1}$

The gas composition is a single-valued $f(\mathcal{J}_0/\mathcal{J}_1, Q)$

Introduction

Analytical OES

(LIF OH) AL

Absorption

LIF N₂(A)

LIF on OH in an APPJ - water interface space-dependent He-air-water mixture

53 / 97

air and water from quenching and vibrational relax.

laser beam dia. = 0.1 mm (focussed) - observation slit = 0.1 mm

Parallel plates Dielectric Barrier Discharge DBD

(LIF OH) A

Possible interference from photochemical processes

Ozone photodissociation (no O₃ expected in He/Ar H₂O discharges)

 $O_3 + h \nu_L \rightarrow O(^1D) + O_2$

 $O(^{1}D) + H_{2}O \rightarrow 2OH$

Hydrogen peroxide photodissociation

 $H_2O_2 + h\nu_L \rightarrow 2OH$

(LIF OH) Abs

Possible interference from photochemical processes

Ozone photodissociation (no O_3 expected in He/Ar H_2O discharges)

 $O_3 + h \nu_L
ightarrow O(^1D) + O_2$

 $O(^1D) + H_2O \rightarrow 2OH$

Hydrogen peroxide photodissociation

 $H_2O_2 + h\nu_L \rightarrow 2OH$

 $[H_2O_2]{=}780~ppm$ \Rightarrow LIF signal 200 times lower than in the discharge

- 50% hydrogen peroxide solution in the bubbler
- no discharge

The rotational excitation of OH ground state

LIF excitation spectrum

H_2O_2 photo-dissociation

suprathermal			rotational	distr	distribu-	
tion	(1530	Κ	nascent	temperat	ure)	
but st	rongly re	laxed	by RET,	even within	the	
short duration of the laser pulse						

The rotational excitation of OH ground state

in He-H ₂ O discharge					
thermal	nermal rotational distribution				
due to the long lifetime of OH					
H ₂ O ₂ photo-dissociation					
suprathermal	rotational	distribu-			
tion (1530	K nascent	temperature)			
but strongly relaxed by RET, even within the					
short duration of the laser pulse					

LIF excitation spectrum

The rotational excitation of OH ground state

in He-H ₂ O discharge					
thermal	hermal rotational distribution				
due to the long lifetime of OH					
H_2O_2 photo-dissociation					
suprathermal	rotational	distribu-			
tion (1530	K nascent	temperature)			
but strongly relaxed by RET, even within the					
short duration of the laser pulse					

LIF excitation spectrum

LIF N₂(A)

OH decay in the post-discharge

$$OH + OH \rightarrow H_2O + O$$

$$OH + OH + M \rightarrow H_2O_2 + M \qquad k_{quad} = 5.2 \times 10^{-12} cm^3 s^{-1} \text{ at } P = 760 \text{ Torr}$$

$$\frac{d[OH]}{dt} = -2k_{quad} [OH]^2$$

58 / 97

OH decay in the post-discharge

$$\begin{array}{l} OH + OH \rightarrow H_2O + O \\ OH + OH + M \rightarrow H_2O_2 + M \\ \hline \frac{d[OH]}{dt} = -2k_{quad}[OH]^2 \end{array} k_{quad} = 5.2 \times 10^{-12} cm^3 s^{-1} \text{ at } \mathbf{P} = \mathbf{760 \ Torr} \end{array}$$

59 / 97

OH decay in the post-discharge

$$\begin{array}{l} OH + OH \rightarrow H_2O + O \\ OH + OH + M \rightarrow H_2O_2 + M \\ \hline k_{quad} = 5.2 \times 10^{-12} cm^3 s^{-1} \text{ at } \mathsf{P} = \mathbf{760 \ Torr} \\ \hline \frac{d[OH]}{dt} = -2k_{quad} [OH]^2 - \left(\sum_i k_i [X_i] + C\right) [OH] \quad \text{with} \quad \sum_i k_i [X_i] = K_i e^{-bt} \end{array}$$

OH decay in the post-discharge

$$\begin{array}{l} OH + OH \rightarrow H_2O + O \\ OH + OH + M \rightarrow H_2O_2 + M \\ \frac{d[OH]}{dt} = -2k_{quad}[OH]^2 - \left(\sum_i k_i[X_i] + C\right)[OH] \quad \text{with} \quad \sum_i k_i[X_i] = K_i e^{-bt} \end{array}$$

LIF OH (

Time-Resolved Broad-Band Absorption Spectroscopy (TR-BBAS) born as an OH LIF calibration technique

Time-Resolved Broad-Band Absorption Spectroscopy (TR-BBAS)

$$\frac{I_{\lambda}^{M}(l,\lambda)}{I_{\lambda}^{M}(0,\lambda)} = \int_{+\infty}^{-\infty} exp\left[-IN_{ave}\sum_{i} n_{i}\sigma^{L}(\lambda_{i})\mathcal{L}(\lambda'-\lambda_{i})\right]\mathcal{S}^{N}(\lambda'-\lambda)d\lambda'$$

Time-Resolved Broad-Band Absorption Spectroscopy (TR-BBAS)

minimum detectable density = $(4-5) \times 10^{12} cm^{-3}$

l = 55 mm, gate = 100 μ s, input slit = 100 μ s, average = 10000, meas. time \sim 18 min.

LIF OH (

TR-BBAS improvements for a stand-alone technique

timing scheme (ICCD) and LED collimation

for a better rejection of discharge emission and for multi-pass implementation

LIF OH AL

TR-BBAS improvements for a stand-alone technique

timing scheme (ICCD) and LED collimation

for a better rejection of discharge emission and for multi-pass implementation

OH density in He-H₂O-O₂ DBD

electrodes gap = 4.5 mm

electrodes gap = 2 mm

LIF N₂(A)

LIF + TR-BBAS = powerful tool!

OH density and post-discharge kinetics

Effect of the discharge duration (T_{ON}) - Ar-H₂O pulsed DBD

67 / 97

Introduction

Analytical OES

LIF OH

(Absorption)

LIF + TR-BBAS = powerful tool!

Electron gun: calibrated OH maps

Playing with gun parameters (flux, target NO - YES - material)

metal target

no target (free jet expansion)

Playing with gun parameters (flux, target NO - YES - material)

metal target flux= 0.5 l/s

metal target flux = 1 l/s

Playing with gun parameters (flux, target NO - YES - material)

dist. water target flux= 1 l/s

metal target flux = 1 l/s

Playing with gun parameters (flux, target NO - YES - material)

dist. water target flux= 1 l/s

dist. water target flux= 2 l/s

Fixed laser wavelength

Absorption by $Q_1(1)$ and $Q_{21}(1)$

Fluorescence spectrum - collisionless

Single wavelength LIF thermometry - OH - collisional case

xed laser wavelength

Absorption by $Q_1(1)$ and $Q_{21}(1)$

Fluorescence spectrum - collisional

Single wavelength LIF thermometry - OH - collisional case

K_{RET}/K_Q

number of RET collisons within the lifetime as a function of air partial pressure in He Fluorescence spectrum - collisional

Single wavelength LIF thermometry - NO - collisionless case

Fixed laser wavelength

Simultaneous absorption by R₂₂(2.5) and P₂₂ (13.5)

transitions of NO- γ (0,0) band

Fluorescence spectrum - collisionless

(0,2) band, 0.1 Torr O2 pressure

Single wavelength LIF thermometry - NO - collisionless case

Fixed laser wavelength

Simultaneous absorption by R22(2.5) and P22 (13.5)

transitions of NO- γ (0,0) band

Fluorescence spectrum - collisionless

restricted to three spectral features

Single wavelength LIF thermometry - NO - collisionless case

Sensitivity

 $S = \left(\frac{dT}{T}\right) / \left(\frac{dR_{21}}{R_{21}}\right)$

Fluorescence spectrum - collisionless

restricted to three spectral features

Single wavelength LIF thermometry - NO - collisional case

Fixed laser wavelength

Simultaneous absorption by R22(2.5) and P22 (13.5)

transitions of NO- γ (0,0) band

RET effect

LIF OH Abs

Single wavelength LIF thermometry - NO - collisional case

κ_{RET}/K_Q

number of RET collisons within the lifetime as a function of air pressure

RET effect

increase pressure to 0.4 Torr

LIF OH Abs

Single wavelength LIF thermometry - NO - collisional case

κ_{RET}/K_Q

number of RET collisons within the lifetime as a func-

tion of air pressure

RET dependence on J

S. Lee, J. Luque, J. Reppel, A. Brown and D. Crosley

1378 J. Chem. Phys., Vol. 121, No. 3, 15 July 2004

TABLE III. Rate coefficients of the RET of the NO A $^2\Sigma^+v'$ = 0 (10⁻¹¹ cm³ molec⁻¹ s⁻¹) in the Q₁+P₂₁ band head with different colliders.

J_f	N_2	O ₂	N_2/O_2 (79.5:20.5)	$N_2 \times 79.5 + O_2 \times 20.5$
4.5	8.30	6.50	7.22	7.93
5.5	5.05	4.61	4.76	4.96
6.5	3.93	3.27	3.43	3.79
7.5	2.52	2.19	2.31	2.45
8.5	1.90	1.69	1.84	1.86
9.5	1.51	1.20	1.24	1.45
10.5	1.14	0.91	1.01	1.09
Kobs	28.6±3	17.4±2	25.0±3	26.3

LIF OH Abs

excitation spectrum LIF thermometry: excitation spectrum

Measurements of temperature and hydroxyl radical generation/decay in lean fuel-air mixtures excited by a repetitively pulsed nanosecond discharge

Zhiyao Yin^{a,*}, Aaron Montello^a, Campbell D. Carter^b, Walter R. Lempert^a, Igor V. Adamovich^a

³ Michael A. Chaszeyka Nonequilibrium Thermodynamics Laboratories, Department of Mechanical Engineering, The Ohio State University, Columbus, OH 43210, United States ^b Air Force Research Laboratory, Wright-Patterson AFB, OH 45433, United States

ARTICLE INFO

Article history: Received 9 December 2012 Received in revised form 3 March 2013 Accepted 12 March 2013 Available online 10 April 2013

Kennwords:

ABSTRACT

OH Laser Induced Fluorescence (LIF) and picosecond (ps), broadband Coherent Anti-Stokes Raman Spectroscopy (CARS) are used for time-resolved temperature and time-resolved, absolute OH number density measurements in lean H₂-air, (CH₂-air, Cd₂+air, and Cd₃H₂-air mixtures in a nanosecond (ns) pulse discharge cell/plasma flow reactor. The premixed fuel-air flow in the reactor, initially at T₀ = 500 K and P = 100 torr, is excited by a repetitive ns pulse discharge in a plane-to-plane geometry (peak voltage 28 kV, discharge gap 10 mm, estimated pulse energy 1.25 mJ(pulse), operated in bust: mode at 10 kHz

LIF N₂(A)

Safe LIF thermometry: excitation spectrum

linear laser absorption regime

or partial saturation if absorption coefficients are similar

check that the quantum yield is the same for each rotational line excitation could be different with strong variations of the gas mixture composition

LIF N₂(A)

Safe LIF thermometry: excitation spectrum

linear laser absorption regime

or partial saturation if absorption coefficients are similar

check that the quantum yield is the same for each rotational line excitation could be different with strong variations of the gas mixture composition

Fig. 7. Typical OH LIF excitation spectrum used for temperature measurements. Spectrum taken 2 µs after the last pulse in the burst (v = 10 kHz, 50 pulses). H₂-air, T₀ = 500 K, P = 100 torr, \phi = 0.12.

When electronic quenching is a problem: LIF detection of $N_2(A^3\Sigma_u^+)$ metastable

Choose a strong enemy, he will make you grow up to face him

indio proverb

Optical-Optical Double Resonance (OODR) LIF detection of $N_2(A^3\Sigma_u^+)$ metastable

classical single-photon absorption

 $N_2(A^3\Sigma^+_u) + h\nu_l
ightarrow N_2(B^3\Pi_g)$

fluorescence

 $N_2(B^3\Pi_g)
ightarrow N_2(A^3\Sigma^+_u) + h\nu_f$

LIF thermometry

Optical-Optical Double Resonance (OODR) LIF detection of $N_2(A^3\Sigma_u^+)$ metastable

classical single-photon absorption

 $N_2(A^3\Sigma^+_u) + h\nu_l
ightarrow N_2(B^3\Pi_g)$

fluorescence

$$N_2(B^3\Pi_g)
ightarrow N_2(A^3\Sigma^+_u) + h
u_f$$

the quantum yield is low

$$Y = rac{A_{v',v''}}{A_{v'} + \sum_i k_i [Q_i]} pprox 10^{-4}$$

at ATP in N₂

LIF thermometry $(LIF N_2(A))$

Optical-Optical Double Resonance (OODR) LIF detection of $N_2(A^3\Sigma_{\mu}^+)$ metastable

two resonant photons absorption

$$\begin{split} & N_2(A^3\Sigma_u^+) \ + \ h\nu_{l1} \ \rightarrow \ N_2(B^3\Pi_g) \ + \\ & h\nu_{l2} \ \rightarrow \ N_2(C^3\Pi_u) \end{split}$$

fluorescence

 $N_2(C^3\Pi_u) \rightarrow N_2(B^3\Pi_g) + h\nu_f$

Optical-Optical Double Resonance (OODR) LIF detection of $N_2(A^3\Sigma_u^+)$ metastable

two resonant photons absorption

$$\begin{split} & N_2(A^3\Sigma_u^+) \ + \ h\nu_{l1} \ \rightarrow \ N_2(B^3\Pi_g) \ + \\ & h\nu_{l2} \ \rightarrow \ N_2(C^3\Pi_u) \end{split}$$

fluorescence

$$N_2(C^3\Pi_u) \rightarrow N_2(B^3\Pi_g) + h\nu_f$$

the quantum yield is two orders of magnitude larger

$$Y = \frac{A_{v',v''}}{A_{v'} + \sum_{i} k_i[Q_i]} \approx 10^{-2}$$

at ATP in N₂

LIF OH /

LIF thermometry

LIF thermometry

Optical-Optical Double Resonance (OODR) LIF detection of $N_2(A^3\Sigma_{\mu}^+)$ metastable

simultaneous lasers firing within 1 ns for max. signal at p=1 atm.

step 1: Nd-YAG pumped dye $\lambda \sim 680 nm$

step 2: Nd-YAG pumped dye + SHG by BBO crystal $\lambda \sim 350$ nm

LIF thermometry

OODR-LIF detection of $N_2(A^3\Sigma_u^+)$ - excitation spectra

N₂(B-A) transition

excitation: (3,0) band - detection (3,1) band

N₂(C-B) transition

excitation: (2,3) band - detection (2,1) band

For maximum signal and T_{rot} independence (for $T_{rot} < 400K$)

 λ_1 excites $P_{11}, \, Q_{12}$ heads - J'' = 1 - 10

 λ_2 tuned to J = 10 - 15 of the P_{11} branch

LIF OH

Calibration of OODR-LIF

 $\frac{N_2(A^3\Sigma_u^+) \text{ by OODR-LIF}}{NO-\gamma \text{ emission}}$ $\frac{N_2(A^3\Sigma_u^+) + NO(X) \rightarrow NO(A^2\Sigma^+) + N_2(X)}{NO(A^2\Sigma^+) + N_2(X)}$

LIF thermometry

Calibrated OODR-LIF $N_2(A^3\Sigma_u^+)$ density in a diffuse discharge (APTD)

our result

N₂ APTD at 1.8 KHz

calculations

F. Massines et al. 2005 Plasma Phys.

Control. Fusion 47 B577

LIF thermometry

$N_2({\cal A}^3\Sigma_u^+)$ density in N_2 plus small O_2 admixtures: the transition from diffuse to filamentary regime

time-resolved LIF

The metastable density remains large through the transition

$N_2(A^3\Sigma_u^+)$ density in N_2 plus small O_2 admixtures: the transition from diffuse to filamentary regime

time-resolved LIF

The metastable density remains large through the transition

N₂(A) quenching

remarkably increases at the transition

LIF thermometry

Alternative single-laser OODR-LIF schemes

laser system	$\lambda_1 + mix(\lambda_1, \lambda_2)$	Ti-Sa + TH	Nd-YLF + Dye/OPO			
FPS band	(3,0)	(1,0)	(0,0)			
λ bandhead (Å)	6875.24	8919.39	10510.04			
$A_{ij}(s^{-1})$	$1.07 imes10^4$	$8.72 imes 10^4$	$6.25 imes10^4$			
SPS band	(2,3)	(3,1)	$\Delta v = -1, 0, 1, 2$			
λ bandhead (Å)	3500.5	2962.0	2814.3 - 3567.9			
$A_{ij}(s^{-1})$	$1.65 imes10^{6}$	$8.68 imes10^{6}$				

Nd-YLF (Yttrium-Lithium-Fluoride) $\lambda = 1047 - 1053$ nm

LIF for analytical purposes is basically an absorption experiment

but with a different observable: emission from an excited electronic state

LIF for analytical purposes is basically an absorption experiment

but with a different observable: emission from an excited electronic state

pitfalls (at high pressure)

• the often low quantum yield is a signal killer

LIF for analytical purposes is basically an absorption experiment

but with a different observable: emission from an excited electronic state

pitfalls (at high pressure)

- the often low quantum yield is a signal killer
- cumbersome account of collision processes

LIF for analytical purposes is basically an absorption experiment

but with a different observable: emission from an excited electronic state

pitfalls (at high pressure)

- the often low quantum yield is a signal killer
- cumbersome account of collision processes

advantages

double selectivity – absorption and fluorescence

LIF for analytical purposes is basically an absorption experiment

but with a different observable: emission from an excited electronic state

pitfalls (at high pressure)

- the often low quantum yield is a signal killer
- cumbersome account of collision processes

advantages

- double selectivity absorption and fluorescence
- collision processes in the excited electronic state contain information on quenchers (nature and density)

LIF for analytical purposes is basically an absorption experiment

but with a different observable: emission from an excited electronic state

pitfalls (at high pressure)

- the often low quantum yield is a signal killer
- cumbersome account of collision processes

advantages

- double selectivity absorption and fluorescence
- collision processes in the excited electronic state contain information on quenchers (nature and density)
- byproduct: measurement of collision rate constant by selective v-level excitation

Concluding remarks

And what does all this equal to, in terms of people? Does it suggest that man and human knowledge are fallible: that theories are works of art, however criticizable objectively, and as a result this fact makes it possible for us to progress, progress in an objective way; that all of us contribute to constructing objective knowledge, as artisans who construct a cathedral; and all this becomes a part of life's adventure.

Karl Popper, March 1970

Concluding remarks

If I am stronger it's because I have in me not my little life only but all the lives and I go on securely because I have thousands of eyes

Pablo Neruda
Introduction

