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Spectroscopic Diagnostics in Plasma Chemistry: Plasma parameters

Plasma parameters determine electron impact dissociation rates

The starting point of Plasma Chemistry

electron density

Emission spectroscopy with absolute calibration - with knowledge of the EEDF

Lines ratio method - based on a CR model including electron collision
processes in electronic states

Stark broadening

Thomson scattering

Laser Collision-induced fluorescence
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Spectroscopic Diagnostics in Plasma Chemistry: Plasma parameters

Plasma parameters determine electron impact dissociation rates

The starting point of Plasma Chemistry

electron energy distribution function (Te?) - reduced electric field E/N

Lines ratio method - based on a CR model

Stark polarization spectroscopy

Thomson scattering

Coherent Raman Scattering (CARS)
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Spectroscopic Diagnostics in Plasma Chemistry: vibrational excitation

Vibrational excitation affects dissociation rates and the discharge power balance

see, for example, CO2 and CH4 dissociation in plasma reforming issues or H2 disso-
ciative ionization in negative ion sources

vibrational distributions in the ground state

OES - based on a CR model

infrared emission spectroscopy (polar molecules)

Raman Scattering (spontaneous and coherent CARS)
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Spectroscopic Diagnostics in Plasma Chemistry: gas temperature

Important for processing and for the definition of operating conditions

based on the rotational temperature of emission bands

Tgas=Trot ?
see P J Bruggeman, N Sadeghi, D C Schram and V Linss ”Gas temperature determina-
tion from rotational lines in non-equilibrium plasmas: a review” Plasma Sources Sci.
Technol. 23 (2014) 023001
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Spectroscopic Diagnostics in Plasma Chemistry: transient species

Reaction intermediates: radicals, metastable electronic states

concentration, time evolution: actors and markers of the (plasma-)chemical kinetics,
kinetic models validation

Techniques - preferably time-resolved

OES - based on a CR model

absorption spectroscopy

laser-induced fluorescence (LIF) spectroscopy
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Optical Emission Spectroscopy (OES)

collisional-radiative(CR) models

dA∗

dt
= Rexc − QA∗

Q = radiative. + collisional de-
excitation

Analytical use of OES possible provided:

Rexc is a known function of A
Q is known
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Absorption

line of sight measurement - low spatial resolution

Conventional (resonant, broad-band), Cavity enhanced (CEAS-CRDS)

Lambert-Beer law

ln(IL/I0) ∝ Nave
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Laser Induced Fluorescence (LIF)

pulsed lasers - high temporal and spatial resolution

10 ns - sub-mm3
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Collision-induced transformations of electronic states -
A∗ + M → B + M

electronic quenching

The process by which a collision with specie M removes the energy from
the excited state manifold towards any other final product

Lifetime
τ = 1

Av′+
∑

M kM [M]

Quantum yield
Y =

Av′,v”

Av′+
∑

M kM [M]

Emission and LIF
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Collision-induced transformations of electronic states -
A∗ + M → B + M

rotational energy transfers (RET)

RET collisions are very fast
for N2(B3Πg ):
kRET = 3× 10−9cm−3s−1

kQ = 3× 10−11cm−3s−1

τRET ≈ 1/100τ

τRET � τ

Trot=Tgas

ALWAYS TRUE ?

Emission and LIF
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The OH(A2Σ+ → X 2Π) 3064 Å System in He-H2O

τRET � τ not fulfilled, especially for J > 10, on increasing water content
decrease of lifetime and strong decrease of RET rates on increasing J
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Collision-induced transformations of electronic states -
A∗ + M → B + M

vibrational energy transfers (VET)

VET collisions depend
strongly on collision partner
for OH(A2Σ+, v = 1→ v = 0):
kVET ∼ 10−14cm−3s−1 for He
kVET = 2.7× 10−12cm−3s−1 for Ar
kVET = 7.3× 10−11cm−3s−1 for H2O
kVET = 2.3× 10−10cm−3s−1 for N2

τVET/τ

Strongly dependent on gas mix-
ture composition

Emission and LIF
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Current knowledge on collision processes

heavy particles collisions

Sources: Combustion and atmospheric chemistry research

Electronic quenching - various colliders

NO(A2Σ+), OH(A2Σ+) and CH(A2∆) in the temperature range 300-2500 K

N2(C3Πu , v = 0− 4), N+
2 (B2Σ+

u , v = 0, 1, 2)

He n=3,4 sublevels, Ar n=4 sublevels

H(3d2DJ ), O(3p3PJ ), N(3s4P3/2) (for TALIF meas. of H, O, N), Kr(5p’[3/2]2), Xe(7p[3/2]2) (for calibration)

RET - various colliders

N2(B3Πg ), NO(A2Σ+), CH(A2∆), CH(B2Σ−), OH(A2Σ+)

VET - various colliders

CH(A2∆, B2Σ−, v = 1), OH(A2Σ+, v = 1), the N2(C3Πu , v = 0− 4) manifold
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Current knowledge on collision processes

electron collisions

Electronic quenching and collision transfers - various colliders

He n=3,4 sublevels, Te < 1eV, Te = 3-7 eV - measurements
Ar n=4 sublevels - detailed balance from the inverse electron impact excitation
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Optical Emission Spectroscopy (OES)

collisional-radiative(CR) models

dA∗

dt
= Rexc − QA∗

Q = radiative. + collisional de-
excitation

Analytical use of OES possible provided:

Rexc is a known function of A
Q is known
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Identification of excitation processes: pulsed discharges

The decay of the optical emission is an indication of the excitation process

with Rexc = 0, dA∗

dt
= −QA∗: exponential decay

N2 Second Pos. Sys.

fast component

e + N2(X1Σg )→ N2(C3Πu) + e

Slow component

N2(A3Σ+
u ) + N2(A3Σ+

u )→ N2(C3Πu) + N2(X )
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Emission - LIF Time-correlation: the NO-γ System

NO-γ emission not due to electron
impact excitation

SPS emission follows the electron impact time evolu-

tion
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Emission - LIF Time-correlation: the NO-γ System

N2(A3Σ+
u ) by LIF and NO-γ emission

N2(A3Σ+
u ) + NO(X )→ NO(A2Σ+) + N2(X )

N2 ATP Dielectric Barrier Discharge

Townsend diffuse discharge
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The George Clooney Criterion: WHAT ELSE?

Time correlation is a strong indication but not a rigorous proof. It must be supported
by a knowledge of all possible processes.
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Ratio of emission spectral features - the CH 4300 Å System

in He - CH4 (+small N2 admix.)
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2 (B) + He

if CH(A) is excited by dissociative excita-
tion (DE)

He(23S) + CH4 → CH(A) + prod .

f2 = ICHAYFNS
IFNSYCHA
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= rDE
rPenn
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is a linear function of [CH4]/[N2]
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Ratio of emission spectral features - the CH 4300 Å System

in He - CH4 (+small N2 admix.)
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Ratio of emission spectral features - the CH 4300 Å System

in N2 - CH4 mixtures
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Ratio of emission spectral features - the CH 4300 Å System

in N2 - CH4 mixtures
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is a linear function of [CH4]
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VDF features: The CN(B2Σ+ → X 2Σ+) Violet System

in N2-CH4 mixtures

suprathermal distribution
overpopulation of v=1, 2, 3

in pure N2 gas feed

suprathermal distribution
overpopulation of v up to v=7

active role of the surface

carbon species from the surface de-
posit

not time-resolved measurements
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Does CN(B) excitation involve CN(X) processes?

Time evolutions in pure N2

CN(B) - emission
CN(X) - LIF
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A∗(e) + CN(X )→ CN(B) + prod . NOT POSSIBLE
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VDF features: The CN(B2Σ+ → X 2Σ+) System

weak vibrational relaxation in the CN(B,v) manifold (LIF)

close to nascent CN(B,v) vibrational distributions - memory of the creation process

time-spectrally-resolved

In N2 post-discharge
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fluorescence spectra: weak vibrational relaxation in the CN(B,v)

manifold at low v

spectrally resolved fluorescence - fixed laser wavelength position
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fluorescence spectra: weak vibrational relaxation in the CN(B,v)

manifold at low v

spectrally resolved fluorescence - fixed laser wavelength position
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VDF features: The CN(B2Σ+ → X 2Σ+) System

based on vibrational distributions + a pinch of GC (WHAT ELSE?) criterion

C + N + M → CN(B) + M

Washida et al. 1975 J. Chem Phys. 63
4230
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reaction exhothermicity
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Identification of excitation processes: pulsed discharges

The decay of the optical emission is an indication of the excitation process

with Rexc = 0, dA∗

dt
= −QA∗: exponential decay

N2 Second Pos. Sys.

fast component

e + N2(X1Σg )→ N2(C3Πu) + e

Slow component

N2(A3Σ+
u ) + N2(A3Σ+

u )→ N2(C3Πu) + N2(X )
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Identification of excitation processes: pulsed discharges

And the vibrational distribution too!!

fast component

e + N2(X1Σg )→ N2(C3Πu) + e

intermediate component

e + N2(A3Σ+
u )→ N2(C3Πu) + e slow e

Slow component

N2(A3Σ+
u ) + N2(A3Σ+

u )→ N2(C3Πu) + N2(X )
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Rot. excitation: the OH(A2Σ+ → X 2Π) System

Rotational excitation depends on
the vibrational level

and on water partial pressure

Emission spectra show over-thermal
ro-vibrational excitation

He-H2O discharge
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Rotational excitation: the OH(A2Σ+ → X 2Π) System

Fingerprints of an exothermic process - Perhaps (in He-H2O) disch.:

dissociative excitation H2O + e → OH(A) + e

dissociative recombination H2O+(H3O)+ + e → OH(A) + H(H2)
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E/N from N2 Second Positive System (SPS) and First Negative

System (FNS) emission ratio

electron impact

e + N2(X ) → N2(C , v) + e kXC
v

e +N2(X )→ N+
2 (B, v) + e kXB+

v

EEDF calculated by BOLSIG+
Hagelaar and Pitchford, PSST. 14 722-733 (2005)

kXC
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0
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E/N from N2 Second Positive System (SPS) and First Negative

System (FNS) emission ratio

electron impact

e + N2(X ) → N2(C , v) + e kXC
v

e +N2(X )→ N+
2 (B, v) + e kXB+

v
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OODR-LIF selective pumping of N2(C 3Πu, v): electronic quenching

and VET rate constants

two resonant photons absorption

N2(A3Σ+
u ) + hνl1 → N2(B3Πg ) + hνl2 →

N2(C3Πu)

fluorescence

N2(C3Πu)→ N2(B3Πg ) + hνf
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OODR-LIF selective pumping of N2(C 3Πu, v): electronic quenching

and VET rate constants

Direct fluorescence

electronic quenching rates

Collision induced fluorescence

Vibrational relaxation (VET) rates

complete set of rate constants for N2

collisions

first measurements of VET
selective excitation of single v-levels
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E/N from N2 Second Positive System (SPS) and First Negative

System (FNS) emission ratio

electron impact

e + N2(X ) → N2(C , v) + e kXC
v

e +N2(X )→ N+
2 (B, v) + e kXB+

v

27% C0 increase with VET
ISPS

IFNS
∝

kXC
0

kXB+
0

(kQB+
0 X + AB+

0 )

(kQC
0 X + AC

0 )
0 20 40 60 80 100

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1
 EEPF at E/N=260Td

E
E

P
F(

eV
-3

/2
)

E (eV)

0.01

0.1

1

10

v=1

v=2v=3v=4

 e+N2(X)->e+N2(C,v)

 e+N2(X)->e+N2
+(B)

 c
ro

ss
 s

ec
tio

n 
(1

0-1
8 cm

2 )

v=0

model for (C,v) and (B,v=0) includes collision quenching and vibrational relaxation
dCv

dt
= nekXC

v X − (kQC
v X + AC

v )Cv +
∑

w kwvXCw

dB+
0

dt
= nek

XB+
0 X − (kQB+

0 X + AB+
0 )B+

0

39 / 97
N



Introduction Collision processes Analytical OES LIF OH Absorption LIF thermometry LIF N2(A)

N+
2 (B, v = 0) electronic quenching

rate constants show a dependence on the excitation method class

Need for deeper investigation. Averaging over all data is probably not correct
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E/N determination by intensity ratio of SPS and FNS spectral bands:

effect of N+
2 (B) quenching incertitude

electron impact

e + N2(X ) → N2(C , v) + e kXC
v

e +N2(X )→ N+
2 (B, v) + e kXB+

v

steady-state v=0 emissions ratio
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Three uncertainty cases are presented, with
R varying by a factor of 3
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Model calculation of N2(C,v) populations

model includes collision quenching and vibrational relaxation
dCv

dt
= ne

∑
j k

XC
vj Xj − (kQC

v X + Av )Cv +
∑

w kwvXCw

electronic quenching by N2 - (OODR-
LIF) and by O2 (pulsed discharge)

rate constants (10−11cm3s−1)
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Vibrational Temperature of the ground state - SPS case

Old quenching data (w-out VET)

Te = 1.2 eV Tv (X)=1100 K
Te = 1.7 eV Tv (X)=300 K

New quenching data with VET

Te = 3 eV Tv (X)=1100 K
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Vibrational Temperature of the ground state - FNS case

Penning ionization in He-N2 mixtures

He(23S) + N2(X 1Σg , v)→ N+
2 (B2Σ+

u ) + e + He
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Vibrational Temperature of the ground state - FNS case

Penning ionization in He-N2 mixtures

He(23S) + N2(X 1Σg , v)→ N+
2 (B2Σ+

u ) + e + He

Vertical Franck-Condon factors process

after martix inversion
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Analytical use of OES: conclusions

Is it possible to use OES for analytical purposes? (in particular radicals detection)

electron impact does not always dominate the emission spectra

relationship between the emission and the corresponding radical not
straightforward or inexistent

excitation and quenching processes must be carefully known

even the use of emission features as process monitor must be very careful, when
not impossible

radicals monitoring must rely on other techniques

Laser Induced Fluorescence

Absorption
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Laser Induced Fluorescence (LIF)

pulsed lasers - high temporal and spatial resolution

10 ns - sub-mm3

electrode 

dielectric 

z 

x 

y 

L
E

r
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LIF detection of OH

absorption

OH(X2Πi ) + hνL → OH(A2Σ+)

∆v = 1 sequence - (1,0) band

Q1(1)+Q21(1) lines λ = 281.913nm

fluorescence

OH(A2Σ+) → OH(X 2Πi ) + hνF

∆v = 0 sequence (1,1)+(0,0) bands

λ ∼ 310nm
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Model description of LIF process

The measured LIF signal

S(t) = Ω
4π

TηeGR(A(0,0)PA0(t) + A(1,1)PA1(t)) = S0(t) + S1(t)− PMT

J =
∫∞

0 S(t)dt = J0 + J1 - ICCD

Three levels model

dPX
dt

= −BψEL(t)(PX − PA1)
dPA1
dt

= BψEL(t)(PX −PA1)−QA1PA1

dPA0
dt

= R(1→0)PA1 − QA0PA0
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The dance of collisions in fluorescence spectra

Beauty, as well as happiness, is frequent.
No day goes by without we live a little while in paradise.

Jorge Luis Borges
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The VET versus QE competition determines fluorescence features: the

Ar-H2O case

rate coefficients
(cm3s−1)
k1→0
Ar = 2.7 × 10−12

k1→0
H2O

= 7.3 × 10−11

k
QE
H2O

= 6.6× 10−10

VET Yield
kVET

kVET + kQE + A
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Q + VET measurement allows recovering the gas composition

He + H2O + air

model calculations of: J0/J1 and Q =
J0Q0 + J1Q1

J0 + J1
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LIF on OH in an APPJ - water interface

space-dependent He-air-water mixture
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air and water from quenching and vibrational relax.

laser beam dia. = 0.1 mm (focussed) - observation slit = 0.1 mm
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Parallel plates Dielectric Barrier Discharge DBD
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Possible interference from photochemical processes

Ozone photodissociation (no O3 expected in He/Ar H2O discharges)
O3 + hνL → O(1D) + O2

O(1D) + H2O → 2OH

Hydrogen peroxide photodissociation
H2O2 + hνL → 2OH

[H2O2]=780 ppm ⇒ LIF signal 200 times lower than in the
discharge

- 50% hydrogen peroxide solution in the bubbler
- no discharge
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The rotational excitation of OH ground state

in He-H2O discharge

thermal rotational distribution

due to the long lifetime of OH

H2O2 photo-dissociation

suprathermal rotational distribu-

tion (1530 K nascent temperature)

but strongly relaxed by RET, even within the

short duration of the laser pulse

LIF excitation spectrum
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OH decay in the post-discharge

OH + OH → H2O + O

OH + OH + M → H2O2 + M kquad = 5.2× 10−12cm3s−1 at P=760 Torr

d [OH]
dt

= −2kquad [OH]2
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OH decay in the post-discharge

OH + OH → H2O + O

OH + OH + M → H2O2 + M kquad = 5.2× 10−12cm3s−1 at P=760 Torr

d [OH]
dt
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(∑
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Time-Resolved Broad-Band Absorption Spectroscopy (TR-BBAS)

born as an OH LIF calibration technique

collimator 

lens 
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spectrograph 

discharge gap 
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61 / 97
N



Introduction Collision processes Analytical OES LIF OH Absorption LIF thermometry LIF N2(A)

Time-Resolved Broad-Band Absorption Spectroscopy (TR-BBAS)

IMλ (l , λ)
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=
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Time-Resolved Broad-Band Absorption Spectroscopy (TR-BBAS)

minimum detectable density = (4− 5)× 1012cm−3

l = 55 mm, gate = 100 µs , input slit = 100 µs , average = 10000, meas. time ∼ 18 min.
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TR-BBAS improvements for a stand-alone technique

timing scheme (ICCD) and LED collimation

for a better rejection of discharge emission and for multi-pass implementation
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TR-BBAS improvements for a stand-alone technique

timing scheme (ICCD) and LED collimation

for a better rejection of discharge emission and for multi-pass implementation
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OH density in He-H2O-O2 DBD

electrodes gap = 4.5 mm
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LIF + TR-BBAS = powerful tool!

OH density and post-discharge kinetics

Effect of the discharge duration (TON ) - Ar-H2O pulsed DBD
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LIF + TR-BBAS = powerful tool!
Electron gun: calibrated OH maps
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Playing with gun parameters
(flux, target NO - YES - material)

no target (free jet expansion)
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Playing with gun parameters
(flux, target NO - YES - material)

metal target flux= 0.5 l/s
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Playing with gun parameters
(flux, target NO - YES - material)

dist. water target flux= 1 l/s
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Playing with gun parameters
(flux, target NO - YES - material)
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Single wavelength LIF thermometry - OH

collisional case

Fixed laser wavelength

Absorption by Q1(1) and Q21(1)
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Single wavelength LIF thermometry - OH - collisional case

KRET /KQ

number of RET collisons within the lifetime as a func-

tion of air partial pressure in He
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Single wavelength LIF thermometry - NO - collisionless case

Fixed laser wavelength

Simultaneous absorption by R22(2.5) and P22 (13.5)

transitions of NO-γ (0,0) band
Fluorescence spectrum - collisionless

(0,2) band, 0.1 Torr O2 pressure
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Single wavelength LIF thermometry - NO - collisionless case

Fixed laser wavelength

Simultaneous absorption by R22(2.5) and P22 (13.5)

transitions of NO-γ (0,0) band
Fluorescence spectrum - collisionless

restricted to three spectral features
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Single wavelength LIF thermometry - NO - collisionless case

Sensitivity

S = ( dT
T

)/( dR21
R21

)
Fluorescence spectrum - collisionless

restricted to three spectral features
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Single wavelength LIF thermometry - NO - collisional case

Fixed laser wavelength

Simultaneous absorption by R22(2.5) and P22 (13.5)

transitions of NO-γ (0,0) band

RET effect

increase pressure to 0.4 Torr
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Single wavelength LIF thermometry - NO - collisional case

KRET /KQ

number of RET collisons within the lifetime as a func-

tion of air pressure
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Single wavelength LIF thermometry - NO - collisional case

KRET /KQ

number of RET collisons within the lifetime as a func-

tion of air pressure
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excitation spectrum LIF thermometry: excitation spectrum
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Safe LIF thermometry: excitation spectrum

linear laser absorption regime
or partial saturation if absorption coefficients are similar

check that the quantum yield is the same for each rotational line excitation
could be different with strong variations of the gas mixture composition
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When electronic quenching is a problem: LIF detection of N2(A3Σ+
u )

metastable

Choose a strong enemy,
he will make you grow up to face him

indio proverb
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Optical-Optical Double Resonance (OODR) LIF detection of

N2(A3Σ+
u ) metastable

classical single-photon absorption

N2(A3Σ+
u ) + hνl → N2(B3Πg )

fluorescence

N2(B3Πg )→ N2(A3Σ+
u ) + hνf

the quantum yield is low

Y =
Av′,v”

Av′ +
∑

i ki [Qi ]
≈ 10−4

at ATP in N2
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Optical-Optical Double Resonance (OODR) LIF detection of

N2(A3Σ+
u ) metastable

two resonant photons absorption

N2(A3Σ+
u ) + hνl1 → N2(B3Πg ) +

hνl2 → N2(C3Πu)

fluorescence

N2(C3Πu)→ N2(B3Πg ) + hνf

the quantum yield is two orders of
magnitude larger

Y =
Av′,v”

Av′ +
∑

i ki [Qi ]
≈ 10−2

at ATP in N2
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Optical-Optical Double Resonance (OODR) LIF detection of

N2(A3Σ+
u ) metastable
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Optical-Optical Double Resonance (OODR) LIF detection of

N2(A3Σ+
u ) metastable

simultaneous lasers firing within 1 ns for max. signal at p=1 atm.

step 1: Nd-YAG pumped dye λ ∼ 680nm

step 2: Nd-YAG pumped dye + SHG by BBO crystal λ ∼ 350nm
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OODR-LIF detection of N2(A3Σ+
u ) - excitation spectra

N2(B-A) transition

excitation: (3,0) band - detection (3,1) band
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N2(C-B) transition

excitation: (2,3) band - detection (2,1) band
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For maximum signal and Trot independence (for Trot < 400K )

λ1 excites P11,Q12 heads - J” = 1− 10

λ2 tuned to J = 10− 15 of the P11 branch
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Calibration of OODR-LIF

N2(A3Σ+
u ) by OODR-LIF

NO-γ emission

N2(A3Σ+
u ) + NO(X )→ NO(A2Σ+) + N2(X )

N2 Second Pos. Sys.
NO-γ emission

N2(A3Σ+
u ) + N2(A3Σ+

u )→ NO(C3Πu) + N2(X )

[N2(A)] =
ISPSYNOγk1

INOγYSPSk2
[NO]
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Calibrated OODR-LIF N2(A3Σ+
u ) density in a diffuse discharge

(APTD)

our result

N2 APTD at 1.8 KHz
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calculations

F. Massines et al. 2005 Plasma Phys.
Control. Fusion 47 B577
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N2(A3Σ+
u ) density in N2 plus small O2 admixtures: the transition from

diffuse to filamentary regime

time-resolved LIF

The metastable density remains large
through the transition
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Alternative single-laser OODR-LIF schemes

laser system λ1 + mix(λ1, λ2) Ti-Sa + TH Nd-YLF + Dye/OPO
FPS band (3,0) (1,0) (0,0)

λ bandhead (Å) 6875.24 8919.39 10510.04
Aij(s

−1) 1.07× 104 8.72× 104 6.25× 104

SPS band (2,3) (3,1) ∆v = −1, 0, 1, 2

λ bandhead (Å) 3500.5 2962.0 2814.3 - 3567.9
Aij(s

−1) 1.65× 106 8.68× 106

Nd-YLF (Yttrium-Lithium-Fluoride) λ = 1047 - 1053 nm
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LIF is more than an absorption experiment

LIF for analytical purposes is basically an absorption experiment

but with a different observable: emission from an excited electronic state

pitfalls (at high pressure)

the often low quantum yield is a signal killer

cumbersome account of collision processes

advantages

double selectivity - absorption and fluorescence

collision processes in the excited electronic state contain information on
quenchers (nature and density)

byproduct: measurement of collision rate constant by selective v-level excitation
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Concluding remarks

And what does all this equal to, in terms of people? Does it
suggest that man and human knowledge are fallible: that theories
are works of art, however criticizable objectively, and as a result

this fact makes it possible for us to progress, progress in an
objective way; that all of us contribute to constructing objective
knowledge, as artisans who construct a cathedral; and all this

becomes a part of life’s adventure.

Karl Popper, March 1970
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Concluding remarks

If I am stronger
it’s because I have in me

not my little life only
but all the lives

and I go on securely
because I have thousands of eyes

Pablo Neruda
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Thank you
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