This set of slides consists of a collection of short presentations on different topics, all related to plasma diagnostics. During my presentation I will use the first 'introductory' presentation as a guideline. I will discuss some diagnostics in more detail, and make a selection of the applications of diagnostics, depending on the audience.

Plasma Diagnostics

- how to study molecule formation in plasma ? -

Richard Engeln

Where innovation starts

TU

" your working gas mixture ≠ input gas mixture" (at high dissociation degree)

quote from Prof. J. Winter during his lecture during the 2005 Summer School on Low Temperature Plasma Physics: Basics and Applications

e technische universiteit eindhover

Introduction Molecule Formation in Plasma

Plasma source

O₂ plasma expansion

IU/e

 O_2 plasma impinging on a substrate

taken from: A. Lebéhot et al. in 'Atomic and Molecular Beams', ed. R. Campargue

technische universiteit eindhoven

substrate

Introduction

Molecule Formation in Plasma

 $O(^{3}P)_{atm} + NO_{ads} \rightarrow NO_{2}{^{2}B_{1}} \rightarrow NO_{2}{^{2}A_{1}} + hv$

N₂ plasma with O₂ injected in the background

Introduction

Molecule Formation in Plasma

Introduction Molecule Formation in Plasma

Dark (dense) clouds

- ✓ 10-30 K / 10⁴-10⁸ part./cm³
- ✓ Universal molecule factory

Diffuse (translucent) clouds

- ✓ 40-100 K / 100 part./cm³
- \checkmark Unknown absorption features

Introduction

Questions when studying molecule formation in plasma ? (when in contact with a surface)

- > What particles are arriving at the surface ?
- In which state are the particles arriving ?
- > New molecules are generated:
 - electronically and/or ro-vibrationally excited ?
 - substrate material and temperature dependence ?
- Is there flux dependence on the generation process ?

Introduction

Questions when studying molecule formation in plasma? (when in contact with a surface)

6

- \triangleright What particles are arriving at the surface ?
- In which state are the particles arriving?
- What is needed to answer - electronically and/or ro-vibrationally

 - excited ?
 - substrate material and temperature
 - dependence ?
- \succ Is there flux dependence on the generation process ?

Gas-phase optical diagnostics for the detection of stable molecules and atomic/molecular radicals

(VUV) Laser Induced Fluorescence

- relative densities, + spatial resolution
- Fourier Transform IR/UV absorption
 - line of sight, + absolute densities, + large $\lambda\text{-range}$ (overview spectrum)
- (Cavity Ring Down) absorption
 - line of sight, + (very) high sensitivity
- (spontaneous) Raman spectroscopy
 - 'low' sensitivity, + every molecule Raman active, + spatial resolution

Plasma Diagnostics (optical)

Optical diagnostic	Parameters	Examples
Doppler LIF	w, T, n	<u>Ar-metastable</u>
Two-photon LIF	w, T, n	<u>H atom</u>
VUV LIF	n(v,J), T	<u>H₂^{r,v}</u>
IR absorption	n(v,J), T	<u>NO, N₂O, NO₂</u>
Cavity Ring Down absorption	n(v,J), T	<u>NH, NH₂, NH₃</u>

Literature

On diagnostics (general):

✓ H R Griem, *Plasma Spectroscopy* (McGraw-Hill Book Company, New York, 1964)

 ✓ W Demtröder, Laser Spectroscopy, Basic Concepts and Instrumentation edited by F P Schäfer (Springer-Verlag, Berlin, Heidelberg, New York, 1981)

✓ K Muraoka, K Uchino, M D Bowden, Plasma Physics and Controlled Fusion **40**, 1221 (1998)

 ✓ J-P E Taran, CARS spectroscopy in Applied Laser Spectroscopy, edited by W Demtröder and M Inguscio (Plenum, New York, 1990)

✓ G Berden, R Peeters, G Meijer, Int. Rev. Phys. Chem. 19, 565 (2000)

 ✓ G. Berden and R. Engeln, *Cavity Ring-Down Spectroscopy, Techniques and Applications*, Blackwell Publishing Ltd, United Kingdown (2009)

Laser Induced Fluorescence spectroscopy

Laser Induced Fluorescence (LIF)

 \blacktriangleright number of laser photons n_a absorbed in unit volume and time:

$$n_a = \sigma_{li} I_L n_l$$

humber of fluorescence photons $N_f(\lambda_{ik})$ originating from V:

$$N_f = n_a V q_f = \sigma_{li} I_L n_l V \cdot \frac{A_{ik}}{A_i + R}$$

➢ signal S_f:

$$S_{f} = N_{f} \cdot \Omega / 4\pi \cdot T \cdot q_{ph}(\lambda) \cdot G_{ph}$$
$$S_{f} \propto n_{l}$$

laser

I_I

Advantages

- ➤ sensitive
- > extra info from time behaviour
- experimentally straightforward
- possibility of 2D-imaging

Disadvantages

- > not quantitative
- depending on gas composition (quenching)

How to detect the hydrogen atom in the growith tate? with LIF ?

2 photon LIF

H excitation schemes

Advantages

- no demanding VUV-generation
- > non-resonant fluorescence detection possible
- self-absorption can be avoided

Disadvantages

- Iow 2-photon cross sections require high laser intensities
- 2-photon cross sections often not

known

Quantities deduced from LIF

- integrated intensity: n
- > Doppler width: T

$$\frac{\Delta v_D}{v} = \frac{1}{c} \sqrt{\frac{8 \ln 2 \cdot kT}{M}}$$

> Doppler shift
$$v - v_0$$
: **v**

2 photon LIF on atoms

monitoring H

3p 207 nm 207 nm 207 nm 2p

monitoring N

Applications:

- ➢ fast deposition of a-Si:H
- ➤ H-source
- surface passivation

Applications:

- deposition of a-C:N
- plasma etching (photo-resist)

Fig. 7.2 (b). Vibration-rotation levels shown.,

(VUV) LIF on H₂ molecules

Excitation from $H_2(X, v=0)$ to $H_2(B)$

Photons with energy \approx 11 eV ($\lambda \approx$ 110 nm, Vacuum UV)

Fluorescence of H₂ in B-state

 $\boldsymbol{\lambda}$ in the Vacuum UV

Absorption spectroscopy

Absorption spectroscopy

FTIR absorption

Fourier Transform absorption spectroscopy

FTIR absorption

O₂ FTIR measurement in a vessel

FTIR absorption

O₂ FTIR measurement in a vessel

absorption

IR laser absorption

Interferometer Beamsplitter Beamsplitter Mirror IR Source Mirror Betector Sample Campartment

FT IR absorption

✓ Very high wavelength resolution✓ High sensitivity

✓ Multiplex advantage

✓ Very large wavelength range

✓ Very small wavelength range

 \checkmark Low wavelength resolution

✓ Sensitivity

Homo-nuclear diatomic species **not** detectable in IR

Sensitivity

Alternative schemes:

Fourier Transform spectroscopy (multiplex, but low sensitivity) Cavity Ring Down spectroscopy (high sensitivity)

CRD absorption

Sensitive direct absorption technique

(A. O' Keefe and D.A.G. Deacon, Rev. Sci. Instrum. 59 (1988) 2544)

 $\checkmark\,$ absorption per unit of

pathlength (cavity loss): $1/c\tau = (1 - R + n\sigma L)/d$

- ✓ non-intrusive and remote
- ✓ high sensitivity due to effective multipassing
- ✓ absorptionit≫fine of sight measurement

Basic scheme of the pulsed CRD spectrometer

$$\tau = \frac{a}{c(1-R+n\sigma L)}$$

$$\frac{1}{c\tau} = \frac{1-R}{d} + \frac{n\sigma L}{d}$$

Performing a pulsed CRD experiment

Performing a pulsed CRD experiment

CRD absorption

- + optical technique
- + independent of intensity
- + direct absorption measurement:
 - -- but: line-of-sight
- + high sensitivity due to effective multipassing
- + pulsed light sources: spectral range into the UV

+ experimentally straightforward (tunable laser, highly reflecting mirrors, PMT, 'fast' and 'deep' digitizer)

high potential for diagnostics in plasmas

ETP setup

Plasma created at high pressure (~400 mbar) in cascaded arc plasma source

Expansion into low-pressure chamber (0.2 mbar) + injection of e.g. SiH₄

Plasma in interaction with surface, leading to e.g. deposition or etching

CRD absorption during deposition

CRD for the detection of SiH during a:Si-H deposition

CRD absorption during deposition

CRD spectrum of SiH measured during a:Si-H deposition

CRD absorption during deposition

CRD spectrum of SiH measured during a:Si-H deposition

CRD absorption on SiH

SiH detection: A $^{2}\Delta \rightarrow X ^{2}\Pi$, 405 – 430 nm

TALIF spectroscopy on H atoms

Rayleigh scattering on H/H₂ plasma expansion

DN

TALIF detection of H atoms

H atom density along the jet axis (TALIF)

Effect of nozzle-length on H density

PM

Effect of nozzle-length on H flux

Effect of nozzle-width on H flux

Conclusions

- Large influence of nozzle geometry on H flux
- Loss of H atoms due to surface association (volume association far too slow)

loss of *H* atoms = production of

*H*₂^{*rv*} *at the surface* H flux

H flux: $\Phi_{H} > 10^{21} \text{ s}^{-1}$

Dissociation degree = 0.4

P. Vankan et al., Appl. Phys. Lett. 86 (2004) 101501

S. Mazouffre et al., Phys Rev. E 64 (2001) 066405

Doppler-LIF spectroscopy on Ar atoms

TU/e technische universiteit eindhoven

Expanding Thermal Plasma (ETP)

Plasma creation

Plasma chemistry

Material processing

technische universiteit eindhovei

Doppler LIF

Ar density as function of distance from the exit of the source

TU/e technische universiteit eindhoven

Doppler LIF experimental setup

Typical result of a Doppler LIF measurement

Doppler LIF

Ar velocity distribution functions

Ar atom velocity

Ar atom temperature

calculated with: $\gamma = 1.4$ (theoretically: 5/3 for mono-atomic gas) $z_{ref} = 0.0025$ m $T_0 = 6000$ K

technische universiteit eindhoven

IR absorption spectroscopy on N_2/O_2 plasma

N₂/O₂ plasma setup (IR diode laser absorption spectroscopy)

Molecule Formation in Plasma

 $O(^{3}P)_{atm} + NO_{ads} \rightarrow NO_{2}\{^{2}B_{1}\} \rightarrow NO_{2}\{^{2}A_{1}\} + hv$

N₂ plasma with O₂ injected in the background

TU/e technische universiteit eindhoven

NO formation in an Ar-N₂-O₂ plasma

N₂O formation in an Ar-N₂-O₂ plasma

Time behavior of NO formation in Ar-N₂-O₂ plasma

Time behavior of N₂O formation in an N₂-O₂ plasma

Conclusions

- 1. Input gas mixture, N_2 and O_2 , changes into a mixture of N_2 , O_2 and NO, N_2O and NO_2 .
- 2. Time-resolved measurements show that surfaces become saturated with N atoms and NO radicals.
- 3.In Ar-NO plasmas, up to 90% conversion of NO into N_2 and O_2

VUV-LIF spectroscopy on H₂^{r,v} molecules in plasma

Why study hydrogen plasma expansions? (produced from a cascaded arc)

1. Use of H₂ gas in processing plasma application

- etching and cleaning
- passivation during deposition

2. Astrophysical interest

- 'hot' $\rm H_2,$ formed at grains through surface association, and acts as precursor in astro-chemistry

3. Fundamental study of $H_2/HD/D_2$ Lyman transitions

- extension of database
- 4. The cascaded arc might be used as H⁻ ion source, because of high fluxes of H₂^{r,v} at low T_e (around 1 eV)

9/7/12

PAGE 1

Plasma source and expansion

	I	= 40 - 60 A
	Р	= 5 – 10 kW
	$\Phi_{\sf arc}$	= 3 slm
	p _{arc}	= 0.2x10 ⁵ Pa
	p _{bg}	= 100 Pa

9/7/12 PAGE 2

Plasma expansion

PAGE 3

PLEXIS setup

PLEXIS setup

Laser table

Nd:YAG (450 mJ/shot @ 355 nm) dye laser (50 mJ/shot @ 460 nm)

(8 mJ/shot @ 230 nm)

Vacuum chamber cylindrical (2m x 0.3m) 9 Pa / 3000 sccm H₂ • Movable plasma source and substrate

• Axial magnetic field $B_{max} = 0.2 T$

Ar/H₂ plasma expansion

9/7/12 PAGE 6

Two photon Absorption LIF (TALIF) on atomic hydrogen

H atom density in H₂ plasma expansion (TALIF)

VUV-LIF detection of H₂^{r,v}

Technische Universiteit

University of Technology

9/7/12

PAGE 9

Eindhoven

SARS technique

M. Spaan, A. Goehlich, V. Schultz-von der Gathen, H. F. Döbele, *Applied Optics* **33** (1994) 3865 T. Mosbach, H. M. Katsch, H. F. Döbele, *Rev. Sci. Instrum.* **85** (2000) 3420 P. Vankan, S.B.S. Heil, S. Mazouffre, R. Engeln and D.C. Schram, H. F. Döbele, *Rev. Sci. Instrum.* **75** (2004) 996

9/7/12 PAGE 10

VUV-LIF detection of H₂^{r,v}

Technische Universiteit

University of Technology

9/7/12

PAGE 11

Eindhoven

VUV-LIF detection of H₂^{r,v}

9/7/12 PAGE 12

VUV-LIF setup

VUV-LIF setup

Measured H₂ Lyman spectrum

VUV-LIF setup

VUV-LIF setup

Measured H₂ Lyman spectrum

state-selective spatially resolved non-intrusive

dynamic range > 4 orders detection limit ~ $10^{13} \, \text{m}^{-3}$

P. Vankan et al., Rev. Sci. Instrum. 75 (2004) 996

9/7/12

Measured H₂ Lyman spectrum

University of Technology

Measured H₂/HD/D₂ Lyman spectra

O. Gabriel et al. Chemical Physics Letters 451 (2008) 204

/ Plasma & Materials Processing

9/7/12 PAGE 21

Measured and calculated $H_2/HD/D_2$ Lyman spectrum

Measured and calculated $H_2/HD/D_2$ Lyman spectrum

New calculated Lyman transitions including higher rotational states (J > 10), incollaboration with Abgrall and Roueff

O. Gabriel et al. J. Mol. Spectrosc 253 (2009) 64

9/7/12 PAGE 23

Non-Boltzmann distribution for H₂

Non-Boltzmann distributions in H_2/D_2 jet

Results on H⁻ production through DA process

CRD spectroscopy on N₂/H₂ plasma

N₂/H₂ plasma creation

Plasma chemistry leading to e.g. NH_x

NH₃ formation ?

Cavity Ring Down: principals and features

(O'Keefe and Deacon, Rev. Sci. Instrum. **59** (1988) 2544)

- > absorption per unit of pathlength (cavity loss):
 - $1/c\tau = (1 R + n\sigma L)/d$

- > non-intrusive
- high sensitivity due to effective multipassing
- direct absorption -> line of sight measurement

Cavity Enhanced Absorption detection scheme

Rev. Sci. Instrum. 69, 3763 (1998)

CEA measurement recorded in a vessel in which N_2/H_2 -plasma expands

Part of the absorption spectrum of NH_3 as measured in an expanding N_2/H_2 plasma

Ammonia density produced in expanding N₂ plasma in which H₂ is injected in the background

Ammonia density as function of background pressure at constant gas flow (N₂-arc/H₂-background)

NH₃ production in two different vessels

Appl. Phys. Lett. 2002, 81, 418

Input gas mixture, N_2/H_2 , changes into $N_2/H_2/NH_3$ mixture (12 % of the background gas is NH_3).

NH₃ is formed at surfaces.