

High-Pressure Thermal Plasmas and Sources

Tony Murphy 19th European Summer School, October 2014 "Low Temperature Plasma Physics: Basics and Applications"

MANUFACTURING FLAGSHIP www.csiro.au

What is a Thermal Plasma?

What is a Thermal Plasma?

At or close to atmospheric pressure (at least 0.1 atm)

Temperature ~ 1 to 2 eV (10 000 to 20 000 K) for electrons and heavy species

Formed by dc or ac electric arcs, radio-frequency or microwave electromagnetic fields

Dominated by collisions

Highly ionised (typically 100%, at least 5%)

High electron densities (~ 10²³ m⁻³)

Very widely used in manufacturing and other industries

- High power fluxes
- High fluxes of reactive species
- Strong radiative emission

Thermal Plasma Applications: Arc Welding

Thermal Plasma Applications: Plasma Cutting

Thermal Plasma Applications: Plasma Spraying

Thermal Plasma Applications: Waste Treatment

Thermal Plasma Applications: Arc Lighting

Xenon arc lamp

Carbon arc lamp

Thermal Plasma Applications: Mineral Processing

Plasma remelting

Electric arc furnaces

Thermal Plasma Applications: Circuit Breakers

Thermal Plasma Applications: ICP-OES, ICP-MS

Inductively-coupled plasma – optical emission spectroscopy

Inductively-coupled plasma – mass spectroscopy

Thermal Plasma Applications: Nanoparticle Synthesis and Particle Spher<u>oidization</u>

Thermal Plasmas in Nature: Lightning

The First Thermal Plasma Application?

The Miller-Urey experiment

Outline

- 1. Thermal plasma properties
 - Local thermodynamic equilibrium (LTE)
 - Composition
 - Thermodynamic and transport properties
 - Radiative emission
 - Deviations from LTE
- 2. Generation of thermal plasmas
 - Transferred arcs
 - Non-transferred arcs
 - RF inductively-coupled plasmas
 - Microwave plasmas
 - Types of plasma flow
- 3. Modelling of thermal plasmas
 - Equations
 - Turbulence, electrode sheaths, gas mixtures
- 4. Thermal plasma diagnostics
 - Enthalpy probes
 - Emission spectroscopy
 - Laser scattering
- 5. Thermal plasma applications
 - Plasma waste destruction

Collisions between Electrons and Ions

Collisions between Electrons and Heavy Species Transfer Little Energy

CSIRC

Lots of Collisions between Electrons and Ions Transfer A Lot of Energy

CSIRC

Effect of Pressure on Equilibrium

Increasing pressure increases the number density, and therefore the collision rate and the transfer of energy from electrons to heavy species

Local Thermodynamic Equilibrium (LTE)

LTE exists if all species satisfy

- Maxwellian distribution for translational temperatures
- Boltzmann distribution for excitation temperatures
- Chemical equilibrium equations for reactions, e.g., ionisation

and all these temperatures are the same

LTE exists if the collision rate is much greater than the rates of diffusion and convection

It is generally valid in the bulk of the plasma (away from the edges and electrodes)

If LTE exists, then if we know (at a given point in the plasma)

- the pressure
- the temperature (or instead the density of any species)
- if there is a mixture of gases, the proportions of each gases

Number density (m⁻³)

then we can fully describe the composition of the plasma at that point

This greatly simplifies modelling and diagnostics

Temperature (K)

Example: argon arc at 1 atm

Why Calculate Plasma Properties? 1. They are needed for computational modelling

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho v) = 0$$

$$\frac{\partial (\rho v)}{\partial t} + \nabla \cdot (\rho v v) = -\nabla P - \nabla \cdot \tau + \mathbf{j} \times \mathbf{B} + \rho \mathbf{g}$$
where $\tau_{rr} = -2\eta \partial v_r / \partial r$, etc
$$\frac{\partial (\rho h)}{\partial t} + \nabla \cdot (\rho v h) = \frac{\mathbf{j}^2}{\sigma} - U - \nabla \cdot \left(\frac{\kappa}{c_p} \nabla h\right) + \frac{5k_B}{2ec_p} \mathbf{j} \cdot \nabla h$$
where h is a function of T

 $\nabla \cdot (\boldsymbol{\sigma} \nabla \phi) = \mathbf{0}$

Why Calculate Plasma Properties? 2. Measurements are inaccurate and inadequate

Classification of Properties

Thermodynamic properties

- Mass density (kg/m³)
- Specific heat at constant pressure c_p (J/kg/K)
- Specific enthalpy (J/kg)

Transport properties (transport coefficients)

- Viscosity (kg/m/s)
- Thermal conductivity (W/m/K)
- Electrical conductivity (S/m)
- Ordinary diffusion coefficient (m²/s)
- Thermal diffusion coefficient (kg/m/s)

Radiation properties

• Net emission coefficient (W/m³/sr)

Relation between Basic Data and Material Properties Properties

Plasma Composition

Use either:

- Saha equations for ionisation reactions & Guldberg-Waage equations for dissociation reactions
 - Solve simultaneously (one equation for each reaction)
- Minimisation of Gibbs free energy G = H TS (H = enthalpy, S = entropy)
 - Restrictions: chemical elements conserved, charge neutrality
 - Input data (specific heat of each species / partition functions for each species) can be calculated from spectral data, or taken from tables

Examples

Thermodynamic Properties

These are easily calculated once the plasma composition is known

Density (kg m⁻³)
$$\rho = \sum_{i=1}^{N} n_i m_i$$

Enthalpy (J kg⁻¹) $h = \frac{1}{\rho} \sum_{i=1}^{N} n_i m_i h_i$ (+ minor correction term)
Specific heat (J kg⁻¹K⁻¹) $C_p = \frac{\partial h}{\partial T}\Big|_p$

Specific Heat for Various Plasmas

Enthalpy for Various Plasmas

Transport Properties

- Viscosity: transport of momentum perpendicular to flow
- Thermal conductivity: transport of heat
- Electrical conductivity: transport of charge
- Diffusion coefficients: transport of mass

Determined by collision cross-sections (mean free paths) of all species

For plasmas, have many species present – need information about collision cross-sections between all pairs of species: neutral-neutral, neutral-ion, neutral-electron, charged-charged (Coulomb)

References for transport coefficient calculations:

J. O. Hirschfelder, C. J. Curtiss and R. B. Bird 'Molecular Theory of Gases and Liquids, 2nd edn (Wiley: New York, 1964)

M. I. Boulos, P. Fauchais and E. Pfender 'Thermal Plasmas: Fundamentals and Applications' Vol. 1 (Plenum: New York, 1994)

A. B. Murphy and C. J. Arundell Plasma Chem. Plasma Process. 14 (1994) 451

Viscosity

To first order:
$$\eta = \frac{1}{2} k_B T \sum_j n_j b_{j0}$$

where $\sum_{j=1}^q Q_{ij}^{00} b_{j0} = 5n_i$
 $Q_{ij}^{00} = \frac{16}{3} \frac{n_i m_i}{m_j} \sum_{k=1}^q \frac{n_k m_k}{(m_i + m_k)^2}$
 $\times \left[5m_j \left(\delta_{ij} - \delta_{jk} \right) \Omega_{ik}^{(1,1)} + \frac{3}{2} m_k \left(\delta_{ij} + \delta_{jk} \right) \Omega_{ik}^{(2,2)} \right]$

Collision Integrals are Calculated from the Intermolecular Potentials

$$\Omega_{ij}^{(l,s)}(T) = \sqrt{\frac{kT}{2\pi\mu_{ij}}} \int_{0}^{\infty} \exp\left(-\gamma_{ij}^{2}\right) \gamma_{ij}^{2s+3} Q_{ij}^{(l)}(g) d\gamma_{ij} \text{ where } \gamma_{ij} = \sqrt{\frac{\mu_{ij}}{2kT}} g_{ij}$$

are averages over a Maxwellian distribution of the gas kinetic cross-section

$$Q_{ij}^{l}(g) = 2\pi \int_{0}^{\pi} \left(1 - \cos^{l} \chi\right) b \, db$$

where the angle of deflection is

$$\chi(b,g) = \pi - 2b \int_{r_m}^{0} \frac{dr/r^2}{\sqrt{1 - \varphi(r)/\frac{1}{2}\mu g^2 - b^2/r^2}}$$

intermolecular potential $\varphi(r)$

reduced mass μ initial relative speed gimpact parameter b

Viscosity for Various Plasmas

Viscosity η describes relationship between shear stress and velocity gradient $F = -\eta \frac{dv_x}{dy}$

CSIR

$$\eta \sim \frac{\sqrt{m_i T}}{\Omega}$$
, Ω is collision cross section

Thermal Conductivity for Various Plasmas

Thermal conductivity k describes relationship between heat flux density and temperature gradient $q = -k \frac{dT}{dx}$

 $k \sim \frac{C_p}{\Omega} \sqrt{\frac{T_i}{m_i}}, \quad \Omega$ is collision cross-section

Components of Thermal Conductivity for Nitrogen

Electrical Conductivity for Various Plasmas

Electrical conductivity σ describes relationship between current density and voltage gradient $j = \sigma \frac{dV}{dx}$

 $\sigma \sim \frac{n_e}{\sqrt{T}n\Omega}$, n_e is electron density, *n* is density of other species, Ω is collision cross section

Radiative Emission

Important in thermal plasmas

A full treatment is difficult:

- Determine emission and absorption at every volume element
- A large number of wavelength intervals required to cover line and continuum radiation

Net emission coefficients are a very successful approximation

- For a given temperature, integrate emission over all wavelengths
- Take into account absorption in a sphere of a given radius

For applications in which radiation flux at boundary is important, need more complex treatments

J. J. Lowke *J* Quant Spectrosc. Radiat. Transf. **16** (1974) 111 A. Gleizes *et al. J. Phys. D: Appl. Phys.* **26** (1993) 1921

Net Emission Coefficients for Argon at 1 atm

J. A. Menart PhD Thesis Uni. of Minneapolis (1996)

2. Generation of Thermal Plasmas

Electric arcs

- Requires electrodes
- Relatively inexpensive
- The most widely-used method
- Transferred or non-transferred arcs
- Usually DC, but can be AC

Radiofrequency inductively-coupled discharges

- No electrodes required
- More expensive
- Generates a larger, more uniform, plasma volume
- Lower efficiency
- More sensitive to process variations

Microwave discharges

- No electrodes required
- Relatively small-scale and expensive
- Usually $T_e > T_h$

Electric Arcs: Transferred Arcs

Arc between one electrode (usually cathode) and metal or conducting workpiece

High energy transfer efficiency to workpiece

Low gas flow

High peak temperature, narrow distribution

Used in welding, plasma cutting, electric arc furnaces, arc lamps, waste destruction, etc.

Electric Arcs: Non-transferred Arcs

Arc is confined within plasma torch High efficiency heating of bulk gas ("arc heater") High gas flow Broader heat flux distribution, lower peak temperature Used in plasma spraying, waste destruction, etc.

400 A, 10 kW argon plasma jet

Solid line: calculations for jet into air

Dotted line: calculations for jet into argon

Circles: measurements for jet into air

A. B. Murphy and P. Kovitya, *J. Appl. Phys.* **73** (1993) 4759

RF Inductively-Coupled Plasmas

No electrodes, so low contamination

Low gradients

Used for powder processing (densification, spheroidisation), nanoparticle production, etc.

Microwave Plasmas

- No electrodes
- Several different designs
- Strongly non-equilibrium (gas temp. < 5000 K, electron temp. > 10 000 K
- Applications include MP-AES (microwave plasma atomic emission spectroscopy), gas treatment

Types of Plasma Flow

Gravity-driven flow

- Low current (< 20 A) arcs
- Flow driven by buoyancy
- Arc lamps

Flow driven by j x B forces

- Higher current (> 30 A) arcs
- Pressure gradient = j x B (the magnetic pinch effect)
- Maximum velocities from 100 to 1000 m/s
- Arcs for welding, plasma cutting, etc

CSIRC

Magnetic Pinch (Lorentz or j x B) Force

Types of Plasma Flow

Flows driven by thermal expansion

- In plasma torches, the arc occurs in a confined region, causing the pressure to rise
- Supersonic velocities (over 2000 m/s) typically achieved
- Arc stabilised by high gas flow and often swirl of gas
- Typical in plasma spraying

Shock diamonds indicating supersonic flow

3. Modelling of Thermal Plasmas

- Use computational fluid dynamic equations for viscous incompressible flow
- A conservation of energy equation is required because the temperature is not constant
- Maxwell's equations are used to describe current continuity (charge conservation) and magnetic fields
- Additional terms describing 'plasma' effects are included (ohmic heating, radiative emission, magnetic pinch effect, electron diffusion)
- The equation of state is implicit in the dependence of thermophysical properties on temperature
- Modifications required for electrode regions, turbulent flows, departures from LTE, high Mach number flow, etc.

Conservation Equations: Single Gas

 $\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho v) = 0$

Time-dependent term Convective term Diffusive term Source term

$$\frac{\partial t}{\partial (\rho v)} + \nabla \cdot (\rho v v) = -\nabla \cdot \tau - \nabla P + j \times B + \rho g$$

$$\frac{\partial (\rho h)}{\partial t} + \nabla \cdot (\rho v h) = -\nabla \cdot \left(\frac{\kappa}{c_p} \nabla h\right) + \frac{j^2}{\sigma} - U + \frac{5k_B}{2e} j \cdot \nabla T$$

$$\nabla \cdot (\sigma \nabla \phi) = 0 \qquad \nabla^2 A = -\mu_0 j$$

Conservation of Mass (Mass Continuity)

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho v) = 0$$

- ρ mass density
- t time
- v velocity

Note: if there is a source of mass (e.g., evaporation of a surface) then a source term is required

Conservation of Momentum

Pressure gradient

$$\frac{\partial(\rho v)}{\partial t} + \nabla \cdot (\rho v v) = -\nabla \cdot \tau - \nabla P + (j \times B) + \rho g \quad \text{Gravity}$$
where $\tau_{ii} = \eta \left(2 \frac{\partial v_i}{\partial x_i} - \frac{2}{3} \nabla \cdot v \right), \quad \tau_{ij} = \eta \left(\frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i} \right), i \neq j$

- ρ mass density, t time, v velocity
- τ viscous stress tensor, η viscosity

P pressure

j current density, B magnetic field strength

g acceleration due to gravity

Conservation of Energy Ohmic heating $\frac{\partial(\rho h)}{\partial t} + \nabla \cdot (\rho v h) = -\nabla \cdot \left(\frac{\kappa}{c_p} \nabla h\right) + \underbrace{j^2}_{\sigma} + \underbrace{J_{\sigma}}_{\sigma} + \underbrace{j \cdot \nabla T}_{P}$ Electron diffusion

- ρ mass density, t time, v velocity, T temperature
- h enthalpy, κ thermal conductivity, c_p specific heat
- j current density, σ electrical conductivity
- U radiative emission coefficient
- k_B Boltzmann constant, *e* elementary charge

For compressible flow (Mach number > 0.5), need to add $-(\tau:\nabla v) + \frac{Dp}{Dt}$, where $\frac{Dp}{Dt} = \frac{\partial p}{\partial t} + v \cdot \nabla p$, to right-hand side

Charge Continuity, Magnetic Potential, Maxwell's Equations

 $\nabla \cdot (\sigma \nabla \phi) = 0$ $\nabla^2 A = -\mu_0 j$ $j = -\sigma \nabla \phi$ $\nabla \times \boldsymbol{B} = \mu_0 \boldsymbol{j}$ σ electrical conductivity, ϕ electric potential A magnetic potential, *j* current density μ_0 permeability of free space

Complications: Turbulence

Many thermal plasma flows are turbulent

- Plasma jets (e.g., for plasma spraying)
- Plasma cutting arcs

Different approaches

- Direct numerical simulation (DNS)
 - Solves all the scales of flow
 - Very expensive, and unfeasible for industrial problems
- Large eddy simulation (LES)
 - Solves for large scales and approximately models small scales of the flow
 - Turbulence model needed to approximate the small scales
- Reynolds-averaged Navier-Stokes (RANS)
 - Approximately models all scales of the flow
 - The most common approach for industrial problems
 - Include:
 - 0 equations: Prandtl mixing length
 - 1 equation: Spalart-Allmaras
 - 2 equations: K- ϵ , K- ϵ RNG, K- ω

The K-ε Model

Turbulence is modelled as an additional diffusion mechanism

Solve additional transport equations for K (turbulence kinetic energy) and ϵ (turbulence energy dissipation), which then give viscosity and thermal conductivity

$$\begin{split} \frac{\partial(\rho K)}{\partial t} + \nabla \cdot (\rho v K) &= \nabla \cdot \left[\left(\eta + \frac{\eta_t}{S_K} \right) \nabla K \right] + 2G - \rho \varepsilon \\ \frac{\partial(\rho \varepsilon)}{\partial t} + \nabla \cdot (\rho v \varepsilon) &= \nabla \cdot \left[\left(\eta + \frac{\eta_t}{S_\varepsilon} \right) \nabla \varepsilon \right] + 2C_1 \frac{\varepsilon}{K} G - C_2 \rho \frac{\varepsilon^2}{K} \\ G &= 2\eta_t \left| \nabla v + \nabla v^T \right|^2 \\ \eta_t &= C_\eta \rho \frac{K^2}{\varepsilon} \text{ is turbulent viscosity, } \kappa_t = \frac{\eta_t C_p}{\Pr_t} \text{ is turbulent thermal conductivity} \\ S_K, S_\varepsilon, C_1, C_2, \Pr_t \text{ are constants} \end{split}$$

Effect of Turbulence

Mass fraction of air for argon plasma jet discharging into air

A. B. Murphy and P. Kovitya, J. Appl. Phys. 73 (1993) 4759

Effect of Turbulence

Temperature (1000 K) of argon plasma jet discharging into air

A. B. Murphy and P. Kovitya, J. Appl. Phys. 73 (1993) 4759

Complications: Electrode Sheath Regions

Anode Treatments

Problem: the temperature adjacent to the anode is low, so if assume LTE, then $n_e \approx 0 \Rightarrow \sigma \approx 0$

Approach 1: Add electron diffusion term (Sansonnens et al.) $j = -\sigma \nabla \phi + e D_e \nabla n_e$ $\nabla \cdot (D_a \nabla n_e) + \alpha \left(n_e n_0 n_e^{*2} / n_0^* - n_e^3 \right) = 0$

 D_e and D_a are electron and ambipolar diffusion coefficients α is three-body recombination coefficient, * indicates LTE value

Approach 2: "LTE-diffusion approximation" (Lowke and Tanaka) Set mesh size near anode to width of region in which electron diffusion dominates ($\Lambda = k_B T/eE \approx 0.1$ mm). Then use LTE everywhere.

L. Sansonnens, J. J. Lowke and J. Haidar *J. Phys. D: Appl. Phys.* **33** (2000) 148 J. J. Lowke and M. Tanaka *J. Phys. D: Appl. Phys.* **39** (2006) 3634

Comparison of Approaches 1 and 2

Thermionic Cathode Treatment

- •Applies to high melting point materials e.g., W, C, Mo, Zr
- •Electrons emitted from cathode
- •Cathode heated through ion bombardment
- •Current densities around 100 A/mm²

Richardson equation

 $j = AT^2 \exp\left(-e\phi_w/k_BT\right)$

 $A \approx 6 \times 10^5 \text{ A mm}^{-2} \text{ K}^{-2}$ for most metals ϕ_w (work function) $\approx 4.5 \text{ V}$ for W $\approx 2.5 \text{ V}$ for W(Th)

Thermionic Current Density vs Temperature

Decreasing work function by 2 V reduces the cathode temperature by 1700 K (for 100 A mm⁻²)

Metals that don't have high melting points (Cu, Al, Fe etc) cannot be thermionic emitters

Complications: Plasmas in Gas Mixtures

If more than one gas present, these gases can mix or demix

Even in LTE, need to know their relative fractions

For each species *i*

$$\partial (\rho Y_i)/dt + \nabla \cdot (\rho \mathbf{v} Y_i) = -\nabla \cdot \mathbf{J}_i + r_i$$

 Y_i : mass fraction r_i : reaction source term

 J_i : diffusion mass flux

$$\boldsymbol{J}_{i} = \frac{n^{2} m_{i}}{\rho} \sum_{j=1}^{q} m_{j} D_{ij} \nabla x_{j} - D_{i}^{T} \nabla \ln T$$

 D_{ii} : ordinary diffusion coefficient

 D_i^T : thermal diffusion coefficient

 x_i : mole fraction

Conservation Equations: Plasmas in Gas Mixtures

$$\frac{\partial(\rho h)}{\partial t} + \nabla \cdot (\rho v h) = \frac{j^2}{\sigma} - U - \nabla \cdot \left(\frac{\kappa}{c_p} \nabla h\right) + \frac{5k_B}{2ec_p} j \cdot \nabla h$$
$$-\nabla \cdot \left(\frac{\kappa}{c_p} \sum_{i=1}^q h_i \nabla Y_i\right) - \nabla \cdot \left(\sum_{i=1}^q h_i J_i\right)$$
$$\frac{\partial(\rho Y_i)}{\partial t} + \nabla \cdot (\rho v Y_i) + \nabla \cdot J_i = r_i$$
$$J_i = \frac{n^2 m_i}{\rho} \sum_{j=1}^q m_j \left[D_{ij}^a \nabla x_j - D_{ij} \frac{ex_j Z_j}{k_B T} E \right] - D_i^{Ta} \nabla \ln T$$

Combined Diffusion Coefficients

Group species into gases

E.g., for Ar-He arc

- argon gas = Ar, Ar⁺, Ar²⁺, Ar³⁺, e⁻
- helium gas = He, He⁺, He²⁺, e⁻

Model diffusion of helium gas through argon gas

Typically 50 ordinary and thermal diffusion coefficients replaced by two combined diffusion coefficients

Exact for homonuclear gases that do not react for plasmas in LTE

Gas Conservation Equation

Species conservation equations for each species (Ar, Ar⁺,

Ar²⁺, Ar³⁺, He, He⁺, He²⁺, e⁻)

$$\nabla \cdot \left(\rho \, \boldsymbol{v} \, Y_i\right) = -\nabla \cdot \boldsymbol{J}_i + r_i$$

replaced by a single gas conservation equation

$$\frac{\partial \left(\rho \overline{Y_{\text{Ar}}}\right)}{\partial t} + \nabla \cdot \left(\rho \nu \overline{Y_{\text{Ar}}}\right) = -\nabla \cdot \overline{J_{\text{Ar}}} \quad \text{Combined diffusion}$$

$$\overline{J_{\text{Ar}}} = \left(n^2/\rho\right) \overline{m_{\text{Ar}}} \overline{m_{\text{He}}} D_{\text{Ar,He}}^x \nabla \overline{x_{\text{He}}} - D_{\text{Ar}}^T \nabla \ln T$$

The overbarred quantities are averaged over all species

A. B. Murphy Phys. Rev. E 48 (1993) 3594

Example: Demixing in an Argon-Helium Arc

Example 2: Metal Vapour in Welding Arc

Argon arc with steel wire

All emission

Atomic iron line

Atomic argon line

Goecke S F, Metzke E, Spille-Kohoff A and Langula M 2005

ChopArc. MSG-Lichtbogenschweißen für den Ultraleichtbau (Stuttgart: Fraunhofer IRB)

Measurements Show a Relatively Cool Arc, and a Local Temperature Minimum on Axis

Zielińska S, Musioł K, Dzierżęga K, Pellerin S, Valensi F, de Izarra C, Briand F Plasma Sources Sci. Technol. 16 832–8 (2007)

Modelling Indicates Cooling Can Occur due to Increased Radiative Emission from Metal Vapour

CSIRC

Schnick M, Füssel U, Hertel M, Spille-Kohoff A and Murphy A B

J. Phys. D: Appl. Phys. 43 022001 (2010)
4. Thermal Plasma Diagnostics

Probes

- Langmuir probes
- Enthalpy probes

Spectroscopy

- Emission spectroscopy
- Absorption spectroscopy

Laser scattering

- Elastic scattering
 - Rayleigh scattering
 - Thomson scattering
 - Raman scattering
- Inelastic
 - LIF (laser-induced fluorescence)
 - Two-photon LIF
 - CARS (coherent anti-Stokes Raman scattering)

Enthalpy Probes

Enthalpy

 $-P_{\rm atm}$

$$h = \frac{n g_w}{n g_g} C_{p \text{ water}} \left(\Delta T_{\text{gas flow}} - \Delta T_{\text{no gas flow}} \right)$$

 $T_{\text{gas flow}} - \Delta T_{\text{no gas flow}} \right) \qquad v = \sqrt{\frac{2}{2}}$

 $n \mathbf{k}_{w}$ is cooling water mass flow rate $n \mathbf{k}_{g}$ is gas sampling mass flow rate Can also measure composition using gas analyser

Enthalpy Probe Results

Optical Emission Spectroscopy

Emission Spectroscopy: Determining the Temperature

Intensity
$$S(T) = \frac{n(T)}{Z(T)} A_{mn} g_m h v_{mn} \exp\left(-\frac{E_m}{k_B T}\right)$$

 E_m is energy of upper level

 A_{mn} is transition probability

 g_m is statistical weight of upper level

 v_{mn} is transition frequency

n is number density of species (e.g. atoms)

Z is partition function of species

The measurement system has to be calibrated

Three standard methods:

- 1. Use a calibrated radiation source
- 2. Use ratio of intensity of two or more lines
- 3. Fowler-Milne method use maximum in S(T)

Laser Scattering

Local (point) data is obtained

Scattering of Laser Light Occurs from Electrons – Both Bound (to Atoms or Ions) and Free

Elastic scattering: $\lambda_{\text{laser}} \neq \lambda_{\text{transition}}$

 $\lambda_{\text{scattered}} = \lambda_{\text{laser}}$

Thomson scattering: elastic scattering from free electrons Rayleigh scattering: elastic scattering from bound electrons

 $\lambda_{\text{scattered}} \neq \lambda_{\text{laser}}$ Raman scattering: elastic scattering from bound electrons

Inelastic scattering: $\lambda_{laser} = \lambda_{transition}$

 $\lambda_{\text{scattered}} = \lambda_{\text{laser}}$ Resonance scattering: inelastic scattering from bound electrons

$$\lambda_{\text{scattered}} \neq \lambda_{\text{laser}}$$
Laser-induced fluorescence: inelastic scattering from bound electrons

4p' 2F7/2

Thomson Scattering

7.

Spectrum of scattered light depends on T and $\rm n_e$

Approach 1. Wavelengthresolved scattering:

Measure scattered light as a function of wavelength – need to be careful of heating the plasma!

Approach 2. Integrated scattering:

No wavelength resolution Accept all light in a given range of wavelengths around laser wavelength

Wavelength (relative to laser wavelength) (nm)

Laser Scattering: Wavelength-Resolved Scattering

M. Kuhn-Kauffeldt, J.-L. Marques, J. Schein, Proc. 20th Int. Conf. Gas Discharges & Applications, Orleans, 2014, p. 730

Laser Scattering: Integrated Scattering

A. B. Murphy and A. J. D. Farmer, J. Phys. D: Appl. Phys. 25 (1992) 634

5. Thermal Plasma Applications

Arc welding Plasma spraying Plasma cutting Mineral processing

- Arc furnaces
- Plasma remelting
- Plasma spheroidisation
- Arc lighting
- **Circuit interruption**
- Chemical synthesis
- Production of nanostructured materials
- Nanoparticles
- Bulk nanostructured materials
- Carbon nanomaterials (nanotubes, graphene, etc.)

Plasma waste treatment

Plasma Waste Treatment

Compared to high-temperature incineration, plasma gives:

Higher temperature and energy densities

- Shorter residence times
- More compact systems

Heat source is independent of waste

- Exhaust gas flow decreased
- Rapid shut-off possible

No lower limit on size

- Easy integration into processes
- On-site destruction possible

BUT:

High cost

Component lifetimes can be limited

High power plasma source difficult to make

J. Heberlein and A. B. Murphy J. Phys. D: Appl. Phys. 41 (2008) 053001

Trend from Niche to Mainstream Applications

Highly-concentrated wastes or wastes requiring high temperatures:

Asbestos-containing wastes

Incinerator fly-ash and grate-ash

Ozone-depleting substances

Other concentrated chemicals

General wastes:

Municipal solid wastes

Medical wastes

Auto-shredder residues

Tyres

Sewage sludge

Westinghouse Plasma: Waste Treatment & Fuel Production

DC plasma torch, up to 2.5 MW

Treat MSW, auto-shredder residue, industrial liquid and solid wastes

Plants capacities from 25 to 300 tonnes per day

E.g., Eco Valley Utashinai, Japan: 165 t auto-shredder waste per day, 8 MW electrical power from burning syngas (CO + H2) produced

PLASCON

- Treats liquid and gaseous waste streams
- 150 kW non-transferred arc

10 plants in Australia, Japan, USA, Mexico

Treats

- Ozone-depleting substances
- PCB-contaminated oils
- Greenhouse gases
- Liquid organic wastes

A. B. Murphy, T. McAllister, Appl. Phys. Lett. 73 (1998) 459

Fluorocarbon Greenhouse Gases are Formed as a By-product of HCFC Production

 $HFC-23 = CHF_3 = trifluoromethane$

Global warming potential of 11 700

Byproduct of CHCIF₂ (HCFC-22) production (2.4% by mass)

 $6HF + 2CHCl_3 \rightarrow CHCl_2F + CHClF_2 + CHF_3 + 6HCl$

185 tonne/year produced at Quimobasicos SA d CV, Monterrey, Mexico

185 tonnes per year of HFC 23

is equivalent to 2.2 million tonnes per year CO₂

i.e., the annual emissions from

a 300 MW coal-fired power station

a 600 MW gas-fired power station

or 500 000 cars

Trifluoromethane is Successfully Destroyed By PLASCON

$CHF_3 + H_2O + \frac{1}{2}O_2 \rightarrow CO_2 + 3HF$

PLASCON Destruction of HCF 23 is Very Profitable

Carbon accounting:

Destroying 1 t HFC 23 Destroys equivalent of 11 700 t CO₂ Produces direct emissions of 0.6 t and indirect emissions of 6 t CO₂

Economics (under Kyoto Protocol Clean Development Mechanism):

Destruction of 1 t HCF 23

- Equivalent to destruction of 11 663 t CO₂
- Carbon credits (@ \$10/t CO₂) have value of \$120 000
- Cost of destruction < \$10 000

185 t/year gives a profit of ~\$20M/year

Thank you

CSIRO Manufacturing Flagship Tony Murphy Chief Research Scientist

- **t** +61 2 9413 7150
- e tony.murphy@csiro.au
- w www.csiro.au

MANUFACTURING FLAGSHIP www.csiro.au

