

Annemie Bogaerts

Department of Chemistry, University of Antwerp (UA), Research group PLASMANT Belgium

Annemie.Bogaerts@uantwerpen.be

19th EU Summer School "Low Temperature Plasma Physics" Bad Honnef, October 5, 2014

- **1. General overview of plasma models**
 - Explanation of different models
 - Advantages and disadvantages

2. Examples of some models
 for various applications
 + Typical results

1. General overview of plasma models

A. Analytical model

Principle:

Simple analytical formulas,

valid for specific range of conditions

e.g.: Condition for self-sustaining discharge:

 α = 1st Townsend coefficient (ionization) γ = 2nd Townsend coefficient (sec. e⁻ emission)

A. Analytical model (cont)

Electron multiplication in plasma, by electron impact ionisation: Balance equation: $\frac{d N_e}{d x} = \alpha N_e$ Solution: $N_e = N_{e,0} \exp(\int \alpha dx)$ At cathode: $N_{e,0}$ At anode: $N_e = N_{e,0} \exp(\alpha L)$

Hence: for 1 electron at cathode: $exp(\alpha L)$ electrons at anode \rightarrow Hence formed in plasma: $exp(\alpha L) - 1$

Number of electrons formed = number of ions formed Secondary electron emission: γ Number of sec.electrons formed by these ions: $\gamma * (exp(\alpha L) - 1)$

→ Condition "self-sustaining discharge": $\gamma * (\exp(\alpha L) - 1) = 1$ → $\alpha L = \ln\left(1 + \frac{1}{\gamma}\right)$ A. Analytical model (cont)

Advantage: Simple, fast

Disadvantage: Approximation, limited validity

B. 0D chemical kinetics model Also called: Global model

Principle:

Rate equations (balance equations) for all species,

based on production/loss by chemical reactions: $\frac{\partial n_i}{\partial t} = \text{Rprod}_i - \text{Rloss}_i$

Rprod / Rloss = $k_{2B} n_1 n_2$ (or : $k_{3B} n_1 n_2 n_3$, or : A n_1)

Electron impact reaction rates:

From Boltzmann solver (\rightarrow Look-up tables: k(ϵ))

+ Electron energy balance equation ($\rightarrow \epsilon$)

Advantage:

Simple, fast (detailed chemistry)

Disadvantage:

Approximation: No transport (assumes plasma = uniform)

However: based on gas flow velocity:

can deduce spatial behavior from temporal behavior

(equivalence batch reactor – plug flow reactor)

Example: Plasma jet

Plasma jet TU/e (2 slm Ar gas feed, 6.5 W,

50% relat. air humidity)

W. Van Gaens and A. Bogaerts, J. Phys. D: Appl. Phys. 46, 275201 (2013)

Example: Plasma jet

Plasma jet TU/e

- (2 slm Ar gas feed,
- 6.5 W, 50% relat. air humidity)
- O, O₃, O₂(a), OH, H₂O₂
- NO, NO₂, HNO₂, HNO₃
- O ↓ at longer distance
- O₃, O₂(a) ↑ at longer distance
- OH dimerizes into H₂O₂ (~ 1.2 cm)
- Cluster formation important in ion chemistry

2.5 • O₂⁻ and NO₃⁻ : relatively low (ppb) levels

W. Van Gaens and A. Bogaerts, J. Phys. D: Appl. Phys. 46, 275201 (2013)

Example: DBD reactor: filamentary character

Reactor length + gas flow → residence time (correlation spatial – temporal behavior)

10-6

 10^{-6}

10-6

Time (s)

Example: DBD reactor: filamentary character

(30 ns)

- N_e \sim 10¹³ cm⁻³

Example: DBD reactor: filamentary character

5 consecutive pulses: species pass through several filaments (as function of distance, or function of residence time)

C. Fluid model: 1D or 2D

Principle:

Moment equations of Boltzmann equation:

Conservation of mass, momentum, energy

Continuity equations (for all species i):

$$\frac{\partial n_i(z,r)}{\partial t} + \overline{\nabla} \cdot \overline{j}_i(z,r) = \text{Rprod}_i(z,r) - \text{Rloss}_i(z,r)$$

Momentum equation: often drift-diffusion approximation: → Transport equations (drift-diffusion for charged species; diffusion for neutrals):

$$\overline{j_i}(z,r) = \left[\pm \mu_i n_i(z,r) \overline{E}(z,r) \right] - D_i \overline{\nabla} n_i(z,r)$$

C. Fluid model (cont.)

Electron energy balance equation:

$$\frac{\partial n_{e} \varepsilon}{\partial t} + \overline{\nabla} \cdot \overline{j_{w}} = -e \overline{j_{w}} \cdot \overline{E} + \sum_{i} k_{i} n_{e} N_{g} \Delta \varepsilon_{i}$$
$$\overline{j_{w}} = \frac{5}{3} \mu_{e} n_{e} \varepsilon \overline{E} - \frac{5}{3} D_{e} \overline{\nabla} n_{e} \varepsilon \qquad \text{lons, neutrals: assumed } T_{g}$$

Advantage: Simple, fast (detailed chemistry)

Coupling to Poisson equation for self-consistent E-field

$$\nabla^2 \mathbf{V} + \frac{\mathbf{e}}{\mathbf{\epsilon}_0} \left(\mathbf{n}_{\mathbf{X}^+} - \mathbf{n}_{\mathbf{X}^-} - \mathbf{n}_{\mathbf{e}} \right) = \mathbf{0} \quad | \quad \overline{\mathbf{E}} = -\overline{\nabla} \mathbf{V}$$

Disadvantage:

Approximation (assumes species gain more or less same amount of energy from E-field as they lose by collisions D. Boltzmann model

Principle:

Full solution of Boltzmann transport equation (terms with E-gain, E-loss)

$$f_{j}(\mathbf{r},\mathbf{v},\mathbf{t}): \frac{\partial f_{j}}{\partial t} + \overline{\mathbf{v}} \cdot \overline{\nabla}_{\mathbf{r}} f_{j} + \overline{a} \cdot \overline{\nabla}_{\mathbf{v}} f_{j} = C_{el}(f_{j}) + C_{inel}(f_{j})$$

Advantage: Accounts for non-equilibrium behavior

Disadvantage: Mathematically complex

→ Typically only used for electron behavior (e.g., 2-term approximation): e.g., BOLSIG+ E. Monte Carlo model

Principle:

- Treats particles on lowest microscopic level
- For every particle during successive time-steps:
 * trajectory by Newton's laws:

$$z = z_0 + v_{z_0} \Delta t + \frac{qE_{ax}}{2m} (\Delta t)^2 \qquad v_z = v_{z_0} + \frac{qE_{ax}}{m} \Delta t$$
$$x = x_0 + v_{x_0} \Delta t + \frac{qE_{rad} \cos(\alpha)}{2m} (\Delta t)^2 \qquad v_x = v_{x_0} + \frac{qE_{rad} \cos(\alpha)}{m} \Delta t$$
$$y = y_0 + v_{y_0} \Delta t + \frac{qE_{rad} \sin(\alpha)}{2m} (\Delta t)^2 \qquad v_y = v_{y_0} + \frac{qE_{rad} \sin(\alpha)}{m} \Delta t$$

* collisions by random numbers

E. Monte Carlo model (cont)

• Probability of collision: $\operatorname{Prob}_{coll} = 1 - \exp(-\Delta s\Sigma(n\sigma_{coll}(E)))$

→ Compare with RN (0 - 1): If Prob < RN => no collision If Prob > RN => collision

Kind of collision: partial collision prob. + compare with RN

E. Monte Carlo model (cont)

New energy + direction: scattering formulas + RN, e.g.:

 $\begin{pmatrix} \sin(\theta)\cos(\varphi) \\ \sin(\theta)\sin(\varphi) \\ \cos(\theta) \end{pmatrix} = \begin{pmatrix} \cos(\theta_0)\cos(\varphi_0) & -\sin(\varphi_0) & \sin(\theta_0)\cos(\varphi_0) \\ \cos(\theta_0)\sin(\varphi_0) & \cos(\varphi_0) & \sin(\theta_0)\sin(\varphi_0) \\ -\sin(\theta_0) & 0 & \cos(\theta_0) \end{pmatrix} x \begin{pmatrix} \sin(\chi)\cos(\psi) \\ \sin(\chi)\sin(\psi) \\ \cos(\chi) \end{pmatrix}$

E. Monte Carlo model (cont)

Advantage:

Accurate (non-equilibrium behavior) + simple Can be applied for all species

Disadvantage:

Long calculation time + not self-consistent In practice: used for electrons (in hybrid model) Or for species in sheath (detailed behavior, e.g., EDF)

F. Particle-in-cell / Monte Carlo model

Principle:

- Similar to MC model (Newtons' laws, random numbers)
- But at every time-step: calculation of electric field from positions of charged particles (Poisson equation)

Advantage: Accurate + self-consistent

Disadvantage: Even longer calculation time

Principle of PIC-MC (cycle):

Real plasma particles: replaced by superparticles 1 superparticle = W real particles (W = weight, e.g. $2x10^7$)

Which model should I use ?

Every model has advantages +

disadvantages...

Solution: use combination

of models !!

-> "hybrid model"

G. Hybrid model

Principle:

Because some species = fluid-like, others = particle-like:

- → Combination of above models, e.g.:
- Monte Carlo for fast (non-equilibrium) species
- Fluid model for slow (equilibrium) species + E-field
- (transfer from fast to slow group: if $(E_k + E_p) < threshold$)

Advantage:

- Combines the advantages + avoids the disadvantages
- Accurate + self-consistent + reduced calculation time

Disadvantage: /

H. Collisional-radiative model (for excited levels)

For each level: continuity equation (balance equation):

$$\frac{\partial n_{Ar^*}}{\partial t} - D_{Ar^*} \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial n_{Ar^*}}{\partial r} \right) - D_{Ar^*} \frac{\partial^2 n_{Ar^*}}{\partial z^2} = R_{prod} - R_{loss}$$

Production + loss processes for each level:

- * electron, Ar ion + Ar atom impact excitation, de-excitation, ionization
- * electron-ion three-body recombination, radiative recombination
- * radiative decay
- * Hornbeck-Molnar associative ionization (for Ar* levels with E > 14.7 eV)

Additional processes for 4s levels:

- * Ar* Ar* collisions -> (associative) ionization
- * Penning ionization of sputtered atoms
- * three-body collisions with Ar atoms
- * radiation trapping of resonant radiation

• Newton's laws: Calc. of position + velocities of atoms, by interatomic interaction potentials

$$\overline{F} = -\overline{\nabla}U$$

$$\overline{a} = \overline{F}/m$$

$$\overline{v} = \overline{v_0} + \overline{a}\Delta t$$

$$\overline{r} = \overline{r_0} + \overline{v_0}\Delta t + \frac{1}{2}\overline{a}(\Delta t)^2$$

Time-integrated trajectory of impacting C-atom on amorphous C substrate

Interaction potential: empirical potential (parameters)

Potential energy surface for impacting H-atom on diamond {111} surface

E.g.: C-films: Brenner interaction potential

• Binding energy: sum of binding energies between atoms *i* and *j* :

$$U_{system} = \sum_{i} \sum_{j>i} \left[V_R(r_{ij}) - \overline{b_{ij}} V_A(r_{ij}) \right]$$

• Repulsive (V_R) and attractive (V_A) terms:

$$\begin{cases} V_R(r_{ij}) = f_{ij}(r_{ij})A_{ij}\exp(-\lambda_{ij}r_{ij})\\ V_A(r_{ij}) = f_{ij}(r_{ij})B_{ij}\exp(-\mu_{ij}r_{ij}) \end{cases}$$

'Many-body' chemistry: binding order function b_{ij}
 b_{ij} = f(local binding topology)

- Semi-infinite surface: periodic ±{x,y} boundaries
- Time scale ~ ns (∆t ~ 0.1-1 fs) Length scale ~ nm
- Initialisation of the simulation:
 - Define substrate
 - Particle impacts
 - » Film growth: sequentially
 - » Reaction mechanisms
 - » Random orientation + {x,y} position above surface
 - Bottom layers fixed
 - Heat dissipation by heat bath

IJ

Advantage:

- Very accurate +
 - deterministic (self-consistent)

<u>Disadvantage:</u>

Long calculation time...

Illustration of MD simulations for film deposition (diamond like carbon)

- 5-fold coordinated C-atom
- 4-fold coordinated C-atom
- 3-fold coordinated C-atom
- 2-fold coordinated C-atom
- | 1-fold coordinated C-atom
- H-atom

Result: Calculated microscopic structure of the film

- 5-fold coordinated C-atom
 - 4-fold coordinated C-atom
- 3-fold coordinated C-atom
- 2-fold coordinated C-atom
 - 1-fold coordinated C-atom
- H-atom

Illustration of MD simulations for plasma catalysis

CH₃ radicals on Ni catalyst surface

Illustration of MD simulations for carbon nanotube growth

Mechanism of cap formation of single walled carbon nanotube on Ni nanoparticle

Illustration of MD simulations for plasma medicine

Breaking of peptidoglycan (~ bacterial cell wall damage) upon impact of O radicals

2. Examples of models for various applications

- A. Fluid model: for DBD in CH_4/CO_2 or CH_4/O_2 Greenhouse gas conversion (plasma chemistry)
- **B. PIC-MC model: for magnetron discharge**
- **C. MC model for electrons: for magnetron discharge**
- **D. Hybrid model: for glow discharge with sputtering**
- E. Hybrid model: for ICP etch reactor

A. Fluid model for DBD in CH_4/CO_2 or CH_4/O_2 Greenhouse gas conversion

Global warming ∼ greenhouse gases → conversion into value-added chemicals

However: greenhouse gases = inert

- → Classical processes: high T, p
- DBD reactor = very useful: T_e >> T_{gas}

Enables reactions that would thermodynamically not occur

Plasma chemistry

75 species (same for CH_4/CO_2 , CH_4/O_2):

Molecules	Charged species	Radicals
CH_4	CH ₅ ⁺ , CH ₄ ⁺ , CH ₃ ⁺ , CH ₂ ⁺ , CH ⁺ , C ⁺	CH ₃ , CH ₂ , CH, C
$\begin{array}{c} C_{2}H_{6}, C_{2}H_{4}, C_{2}H_{2}, \\ C_{3}H_{8}, C_{3}H_{6}, C_{4}H_{2} \\ H_{2} \end{array}$	$C_{2}H_{6}^{+}, C_{2}H_{5}^{+}, C_{2}H_{4}^{+}, C_{2}H_{3}^{+}, C_{2}H_{2}^{+}, C_{2}H^{+}, C_{2}^{+}, C_{3}H_{3}^{+}, C_{2}H_{2}^{+}, C_{2}H^{+}, C_{2}^{+}, H_{3}^{+}, H_{2}^{+}, H^{+}, H^{-}$	C ₂ H ₅ , C ₂ H ₃ , C ₂ H, C ₂ , C ₃ H ₇ , C ₃ H ₅ H
0 ₃ , 0 ₂	0 ₄ ⁺ , 0 ₂ ⁺ , 0 ⁺ , 0 ₄ ⁻ , 0 ₃ ⁻ , 0 ₂ ⁻ , 0 ⁻	Ο
CO ₂ , CO	CO ₂ ⁺ , CO ⁺	
H_2O, H_2O_2	H_3O^+ , H_2O^+ , OH^+ , OH^-	ОН, НО ₂
CH ₂ O, CH ₃ OH, C ₂ H ₅ OH, CH ₃ CHO, CH ₂ CO, CH ₃ OOH, C ₂ H ₅ OOH	Electrons	CHO, CH_2OH , CH_3O , C_2H_5O , C_2HO , CH_3CO , CH_2CHO , CH_3O_2 , $C_2H_5O_2$

Plasma chemistry

1088 reactions taken into account:

165 Electron-neutral collisions (ionization, excitation, dissociation,...) e.g.: $e^- + CH_4 \rightarrow e^- + CH_3 + H$

50 Electron-ion recombination reactions e.g.: $e^- + O_2^+ \rightarrow O + O$

873 Ion/neutral chemical reactions

e.g.: $CH_3 + OH (+M) \rightarrow CH_3OH (+M)$ $CH_4^+ + CH_4 \rightarrow CH_5^+ + CH_3$

Reactor setup and conditions

Operating conditions: 5 kV, 10 kHz

Gas fractions:

- Pure CH₄
- CH₄/CO₂ (90/10 70/30 50/50 30/70 10/90)
- CH₄/O₂ (90/10 70/30)

•65 % of both CO₂ and CH₄ converted after 20s

- •Formation of syngas (H₂/CO ~ 1.5/1)
- •Formation of C_xH_y
- •Formation of CH_2O (~ 3%) and H_2O (~1,5 %)

B. PIC-MC model: for magnetron discharge

Reactor geometry + Magnetic field

Calculated Electron and Ar⁺ Ion Density

Maximum ~ 10^{17} m⁻³ at r = 1.85 cm (maximum B_r)

Fast Cu Atom Density and Thermal Cu atom density

Concentrated near cathode Max ~ 10¹⁸ m⁻³ Broad distribution Max ~ 4x10¹⁷ m⁻³

Erosion profile: Calculated - Measured

C. MC model for electrons: dual magnetron discharge

Magnetic field

MC model for electrons (dual magnetron discharge)

MC model for electrons (dual magnetron discharge)

Comparison MC vs PIC-MC model

MC =

- faster (minutes to 1 hour vs. several weeks for PIC)
- complex geometries possible

But: not self-consistent:

- Input B needed (e.g., from

Gmsh (http://www.geuz.org/gmsh/)

& GetDP (http://www.geuz.org/getdp/)

- Input E needed (e.g., from PIC-MC model)

MC model for electrons (dual magnetron discharge)

D. Hybrid model for GD plasma with sputtering

Combination of different models for various species

Species:	Model used:	
Ar ⁰ atoms	no model (assumed thermalized)	
	or: heat conduction equation	
electrons	MC for fast electrons	
	fluid for slow electrons	
Ar ⁺ ions	fluid (with electrons + Poisson)	
	MC in sheath	
Ar ⁰ _f fast atoms	MC in sheath	
Ar* excited atoms	collisional-radiative model	
Cu ⁰ atoms	thermalization after sputtering: MC	
Cu*, Cu ^{+(*)} , Cu ⁺⁺	collisional-radiative model	
Cu ⁺ ions	MC in sheath	
ł	Hybrid model (GL	

Application: Analysis of solid materials: Sample to be analyzed = cathode of GD Sputtering \rightarrow Excitation, ionization in plasma \rightarrow OES, MS

Input data for the modeling network

- Electrical data:
 - Voltage, pressure, (gas temperature)
 - → Electrical current = calculated self-consistently
- Reactor geometry:

(e.g., cylinder: length, diameter)

- Gas (mixture)
- Cross sections, rate coefficients, transport coefficients,...

All other quantities: calculated self-consistently

Typical calculation results

General calculation results:

- * Electrical characteristics (current, voltage, pressure)
- * Electric field and potential distribution
- * Densities, fluxes, energies of the plasma species
- * Information about collisions in the plasma

Results of importance for applications (sputtering, GD-OES,...):

- * Crater profiles, erosion rates at the cathode
- * Optical emission intensities
- * Effect of cell geometry, operating conditions

Potential distribution: (VG9000 cell 1000 V, 75 Pa, 3 mA)

CDS: ca. 2 mm long NG: major part (9 V)

Densities: (VG9000: 1000 V, 75 Pa, 3 mA):

Ar⁺ ions ~ slow electrons:

^{z (cm)}Hybrid model (GD)

Energies: Argon ion energy distribution (1000 V, 75 Pa, 3 mA):

Calculated:

Measured (MS):

Energies: Copper ion energy distribution (1000 V, 75 Pa, 3 mA):

Calculated:

Measured (MS):

Information about sputtering at the cathode: Crater profile after 45 min. sputt. (VG9000: 1000 V, 75 Pa, 3 mA):

Crater edge effect due to anode front plate:

Craters more flat Because equipot.lines // cathode

Optical emission intensities:

Measured:

E. Hybrid model for ICP etch reactor

HPEM (M.Kushner, University of Michigan)

Calculated species densities (Cl₂, e⁻)

- Cl₂: Maximum near inlet, then depletion (chemical reactions) Fairly uniform density profile
- Electrons: Maximum in center/near coil (ioniz.degree ~ 10⁻⁴)

Calculated fluxes + angul.distrib. to wafer

- Ion fluxes ± 1000x lower than neutral fluxes
- Ions: narrow angular distribution (directed by E-field)
- Neutrals: wide angular distribution

Calculated energy distributions to wafer

- Ions: bimodal distribution (rf bias at substrate):
 Ions "feel" rf bias amplitude (time_{sheath} < 1 rf cycle)
- Neutrals: Maxwellian distribution at low E

Etch profile calculations

Input:

- Fluxes, energy and angular distributions of bombarding species (from plasma model)
- Surface reaction probabilities (etch, oxid, sputt, redepos) of the various species (CI⁽⁺⁾, CI₂⁽⁺⁾, O⁽⁺⁾, O₂⁽⁺⁾, Ar⁺) on the various surface sites (Si, SiCI,SiCI₂, SiCI₃, SiO, SiO₂)

Plasma modeling :

Most appropriate model depends on application:

- Fluid (1D or 2D) or (0D) chemical kinetics modeling:
 - * Detailed information on plasma chemistry

* ± fast

- Particle-in-cell Monte Carlo simulations:
 - * Microscopic non-equilibrium behavior
- Monte Carlo modeling:

* Faster, but not self-consistent

- Hybrid Monte Carlo fluid simulations:
 - * Combination: combines the advantages + eliminates the drawbacks of individual models

* Extra information (etch profiles, OES,...)

- Molecular dynamics simulations: Surface modeling

ISPC 2015 22nd International Symposium on Plasma Chemistry

July 5 – 10, 2015
University of Antwerp, Belgium